Skip to main content

Generation and Propagation of Defects During Crystal Growth

  • Chapter
Springer Handbook of Crystal Growth

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter presents a review of the typical growth defects of crystals fully grown on (planar) habit faces, i.e., of crystals grown in all kinds of solutions, in supercooled melt (mainly low-melting organics) and in the vapor phase. To a smaller extent growth on rounded faces from the melt is also considered when this seems appropriate to bring out analogies or discuss results in a more general context. The origins and typical configurations of defects developing during growth and after growth are illustrated by a series of selected x-ray diffraction topographs (Lang technique) and, in a few cases, by optical photographs.

After an overview (Sect. 4.1) the review starts with the formation of inclusions (Sect. 4.2), which are the main origin of other growth defects such as dislocations and twins. Three kinds of inclusions are treated: foreign particles, liquid inclusions (of nutrient solution), and solute precipitates. Particular attention is directed to the regeneration of seed crystals into a fully facetted shape (capping), and inclusion formation due to improper hydrodynamics in the solution, especially for potassium dihydrogen phosphate (KDP).

Section 4.3 deals briefly with striations (treated in more detail in Chap. 6 of this Handbook) and more comprehensively with the different kinds of crystal regions grown on different growth faces: growth sectors, vicinal sectors, and facet sectors. These regions are usually differently perfect and possess more or less different physical properties, and the boundaries between them are frequently faulted internal surfaces of the crystal. Two subsections treat the optical anomalies of growth and vicinal sectors and the determination of the relative growth rates of neighboring growth faces from the orientation of their common sector boundary.

In Sect. 4.4 distinction is made between dislocations connected to and propagating with the growth interface (growth dislocations), and dislocations generated behind the growth front by plastic glide due to stress relaxation. The main sources of both types of dislocations are inclusions. In crystals grown on planar faces, growth dislocations are usually straight-lined and follow (frequently noncrystallographic) preferred directions depending on the Burgers vector, the growth direction, and the elastic constants of the crystal. These directions are explained by a minimum of the dislocation line energy per growth length, or equivalently by zero force exerted by the growth surface on the dislocation. Calculations based on anisotropic linear elasticity of a continuum confirm this approach. The influence of the discrete lattice structure and core energy on dislocation directions is discussed. Further subsections deal with Burgers vector determination by preferred directions, postgrowth movement of grown-in dislocations, generation of postgrowth dislocations, and the growth-promoting effect of edge dislocations.

Section 4.5 presents twinning, the main characteristics of twins and their boundaries, their generation by nucleation and by inclusions, their propagation with the growth front, and their growth-promoting effect. Postgrowth formation of twins by phase transitions and ferroelastic (mechanical) switching is briefly outlined. Finally, Sect. 4.6 compares the perfection of crystals (KDP and ammonium dihydrogen phosphate (ADP)) slowly and rapidly grown from solutions. It shows that the optical and structural quality of rapidly grown crystals is not inferior to that of slowly grown crystals, if particular precautions and growth conditions are met.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADP:

ammonium dihydrogen phosphate

BCF:

Burton–Cabrera–Frank

DKDP:

deuterated potassium dihydrogen phosphate

ELO:

epitaxial lateral overgrowth

GGG:

gadolinium gallium garnet

HRTEM:

high-resolution transmission electron microscopy

KDP:

potassium dihydrogen phosphate

MOVPE:

metalorganic vapor-phase epitaxy

PL:

photoluminescence

TEM:

transmission electron microscopy

TPRE:

twin-plane reentrant-edge effect

fcc:

face-centered cubic

References

  1. T. Scheffen-Lauenroth, H. Klapper, R.A. Becker: Growth and perfection of organic crystals from undercooled melt, J. Cryst. Growth 55, 557–570 (1981)

    Article  ADS  Google Scholar 

  2. A.R. Lang: Techniques and interpretation in x-ray topography. In: Diffraction and Imaging Techniques in Materials Science, 2nd edn., ed. by S. Amelinckx, R. Gevers, J. Van Landuyt (North-Holland, Amsterdam 1978) pp. 623–714

    Chapter  Google Scholar 

  3. A. Authier: X-ray and neutron topography of solution-grown crystals. In: Crystal Growth and Materials (ECCG-1 Zürich), ed. by E. Kaldis, H.J. Scheel (North-Holland, Amsterdam 1976) pp. 516–548

    Google Scholar 

  4. B.K. Tanner: X-ray Diffraction Topography (Pergamon, Oxford 1976)

    Google Scholar 

  5. A.R. Lang: Topography. In: Internat. Tables for Crystallography, International Union of Crystallography, Vol. C, ed. by A.J.C. Wilson (Kluwer Academic, Dordrecht 1995) pp. 113–123

    Google Scholar 

  6. H. Klapper: X-ray topography of twinned crystals. In: Progress in Crystal Growth and Characterization, Vol. 14, ed. by P. Krishna (Pergamon, Oxford 1987) pp. 367–401

    Google Scholar 

  7. H. Klapper: X-ray topography of organic crystals. In: Crystals: Growth, Properties and Characterization, Vol. 13, ed. by N. Karl (Springer, Berlin, Heidelberg 1991) pp. 109–162

    Google Scholar 

  8. H. Klapper: Defects in non-metal crystals. In: Characterization of Crystal Growth Defects by X-ray Methods, ed. by B.K. Tanner, D.K. Bowen (Plenum, New York 1980) pp. 133–160

    Chapter  Google Scholar 

  9. H. Klapper: X-ray diffraction topography: Application to crystal growth and plastic deformation. In: X-Ray and Neutron Dynamical Diffraction: Theory and Applications, Proc. NATO ASI, Erice 1996, NATO Science Series B, Physics Vol. 357, ed. by A. Authier, S. Logomarsino, B.K. Tanner (Plenum Press, New York 1996) p. 167–177

    Google Scholar 

  10. H. Klapper: Structural defects and methods of their detection. In: Materials Science Forum, Vol. 276–277, ed. by R. Fornari, C. Paorici (Trans Tech, Switzerland 1998) pp. 291–306

    Google Scholar 

  11. H. Klapper: Generation and propagation of dislocations during crystal growth, Mater. Chem. Phys. 66, 101–109 (2000)

    Article  Google Scholar 

  12. S. Zerfoss, S.I. Slawson: Origin of authigenic inclusions in synthetic crystals, Am. Mineral. 41, 598–607 (1956)

    Google Scholar 

  13. G. Laemmlein: Sekundäre Flüssigkeitseinschlüsse in Mineralien, Z. Kristallogr. 71, 237–256 (1929), in German

    Google Scholar 

  14. A.R.J. de Kock: Effect of growth conditions on semiconductor crystal quality. In: Crystal Growth and Materials (ECCG-1 Zürich), ed. by E. Kaldis, H.J. Scheel (North Holland, Amsterdam 1976) pp. 661–703

    Google Scholar 

  15. A.A. Chernov, D.E. Temkin: Capture of inclusions in crystal growth. In: 1976 Crystal Growth and Materials (ECCG-1 Zürich), ed. by E. Kaldis, H.J. Scheel (North Holland, Amsterdam 1977) pp. 4–77, esp. 53–54

    Google Scholar 

  16. V.Y. Khaimov-Malʼkov: (a) The thermodynamics of crystallisation pressure; (b) Experimental measurement of crystallization pressure; (c) The growth conditions of crystals in contact with large obstacles. In: Growth of Crystals, Vol. 2, ed. A.V. Shubnikov, N.N. Sheftal (Consultants Bureau Inc., New York 1959) pp. 3–13 (a), 14–19 (b), 20–28 (c)

    Google Scholar 

  17. N. Zaitseva, J. Atherton, R. Rozsa, L. Carman, I. Smolsky, M. Runkel, R. Ryon, L. James: Design and benefits of continuous filtration in rapid growth of large KDP and DKDP crystals, J. Cryst. Growth 197, 911–920 (1999)

    Article  ADS  Google Scholar 

  18. M.O. Kliia, I.G. Sokolova: The absorption of droplets of emulsion by a growing crystal during crystallization from solutions, Sov. Phys. Crystallogr. 3, 217–221 (1958)

    Google Scholar 

  19. G. Wulff: Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Krystallflächen, Z. Kristallogr. 34, 449–530 (1901), esp. 512–530, in German

    Google Scholar 

  20. R.F. Strickland-Constable: Kinetics and Mechanisms of Crystallisation (Academic, London, New York 1968) pp. 76–84

    Google Scholar 

  21. P. Bennema: Generalized Herring treatment of the equilibrium form. In: Crystal growth: An introduction, North-Holland Series in Crystal Growth I, ed. by P. Hartman (North-Holland, Amsterdam 1973), pp. 342–357

    Google Scholar 

  22. C. Herring: Some theorems on the free energies of crystal surfaces, Phys. Rev. 82, 87–93 (1951)

    Article  ADS  MATH  Google Scholar 

  23. C. Herring: The use of classical macroscopic concepts in surface energy problems. In: Structure and Properties of Solid Surfaces, ed. by R.G. Gromer, C.S. Smith (University of Chicago Press, Chicago 1953) pp. 5–72

    Google Scholar 

  24. W. Schnoor: Über das Wachstum von Auflösungskörpern und Kugeln aus Steinsalz, Z. Kristallogr. 68, 1–14 (1928), in German

    Google Scholar 

  25. H.E. Buckley: Crystal Growth (Wiley, London, New York 1961)

    Google Scholar 

  26. R. Janssen-van Rosmalen, W.H. van der Linden, E. Dobinga, D. Visser: The influence of the hydrodynamic environment on the growth and the formation of liquid inclusions in large potassium hydrogen phosphate crystals, Krist. Tech. 13, 17–28 (1978)

    Article  Google Scholar 

  27. A. Faber: Röntgentopographische Untersuchungen von Wachstumsstörungen durch alternierende Temperaturgradienten im Kali-Alaun. Studienarbeit (Inst. f. Kristallographie, RWTH Aachen 1980), in German

    Google Scholar 

  28. W.M. Vetter, H. Totsuka, M. Dudley, B. Kahr: The perfection and defect structures of organic hourglass inclusion K_2SO_4 crystals, J. Cryst. Growth 241, 498–506 (2002)

    Article  ADS  Google Scholar 

  29. B. Kahr, R.W. Guerney: Dyeing crystals, Chem. Rev. 101, 893–953 (2001)

    Article  Google Scholar 

  30. B. Kahr, L. Vasquez: Painting crystals, Cryst. Eng. Commun. 4, 514–516 (2002)

    Article  Google Scholar 

  31. A.A. Chernov, G.Y. Kuznetsov, I.L. Smolʼskii, V.N. Rozhanski: Hydrodynamic effects during ADP growth from aqueous solutions in the kinetic regime, Sov. Phys. Crystallogr. 31, 705–709 (1986)

    Google Scholar 

  32. R. Janssen-van Rosmalen, P. Bennema: The role of hydrodynamics and supersaturation in the formation of fluid inclusions in KDP, J. Cryst. Growth 42, 224–227 (1977)

    Article  ADS  Google Scholar 

  33. W.J.P. van Enckevort, R. Janssen-van Rosmalen, H. Klapper, W.H. van der Linden: Growth phenomena of KDP crystals in relation to the internal structure, J. Cryst. Growth 60, 67–78 (1982)

    Article  ADS  Google Scholar 

  34. N.P. Zaitseva, I.L. Smolsky, L.N. Rashkovich: Study of rapid growth of KDP crystals by temperature lowering, Sov. Phys. Crystallogr. 36, 113–115 (1991)

    Google Scholar 

  35. N.P. Zaitseva, J.J. De Yoreo, M.R. Dehaven, R.L. Vital, K.E. Montgomery, M. Richardson, L.J. Atherton: Rapid growth of large-scale (40–55 cm) KH_2PO_4 crystals, J. Cryst. Growth 180, 255–262 (1997)

    Article  ADS  Google Scholar 

  36. N. Zaitseva, L. Carman: Rapid Growth of KDP-type Crystals, Progr. Cryst. Growth Charact. Mater. 43, 1–118 (2001)

    Article  Google Scholar 

  37. I. Smolsky, J.J. de Yoreo, N.P. Zaitseva, J.D. Lee, T.A. Land, E.B. Rudneva: Oriented liquid inclusions in KDP crystals, J. Cryst. Growth 169, 741–745 (1996)

    Article  ADS  Google Scholar 

  38. E. Scandale, A. Zarka: Sur lʼorigine des canaux dans les cristaux, J. Appl. Cryst. 15, 417–422 (1982), in French

    Article  Google Scholar 

  39. X.R. Huang, M. Dudley, W.M. Vetter, W. Huang, S. Wang, C.H. Carter Jr.: Direct evidence of micropipe-related pure superscrew dislocations in SiC, Appl. Phys. Lett. 74, 353–355 (1999)

    Article  ADS  Google Scholar 

  40. J. Heindl, H.P. Strunk, V.D. Heydemann, G. Pensl: Micropipes: Hollow tubes in silicon carbide, Phys. Status Solidi (a) 162, 251–262 (1997)

    Article  ADS  Google Scholar 

  41. H.P. Strunk, W. Dorsch, J. Heindl: The nature of micropipes in 6H-SiC single crystals, Adv. Eng. Mater. 2, 386–389 (2000)

    Article  Google Scholar 

  42. Th. Scheffen-Lauenroth: Czochralski-Züchtung und Perfektion organischer Kristalle. Diplomarbeit (Inst. f. Kristallographie, RWTH Aachen 1983), in German

    Google Scholar 

  43. E. Roedder: Fluid inclusions. In: Reviews in Mineralogy, Vol. 12, ed. by P.H. Ribbe (Mineralogical Society of America, BookCrafters, Inc., Chelsea 1984)

    Google Scholar 

  44. W. Bardsley, D.T.J. Hurle, M. Hart, A.R. Lang: Structural and chemical inhomogeneities in germanium single crystals grown under conditions of constitutional supercooling, J. Cryst. Growth 49, 612–690 (1980)

    Article  ADS  Google Scholar 

  45. J.E. Gegusin, A.S. Dziyuba: Gas evolution and the capture of gas bubbles at the crystallization front when growing crystals from the melt, Sov. Phys. Crystallogr. 22, 197–199 (1977)

    Google Scholar 

  46. M. Göbbels: Züchtung organischer Molekülkristalle aus entgasten unterkühlten Schmelzen. Studienarbeit (Inst. f. Kristallographie, RWTH Aachen), in German

    Google Scholar 

  47. G. Engel, H. Klapper, P. Krempl, H. Mang: Growth-twinning in quartz-homeotypic gallium orthophosphate crystals, J. Cryst. Growth 94, 597–606 (1989)

    Article  ADS  Google Scholar 

  48. I.L. Smolsky, A.E. Voloshin, N.P. Zaitseva, E.B. Rudneva, H. Klapper: X-ray topographic study of striation formation in layer growth of crystals from solution, Philos. Trans. Math. Phys. Eng. Sci. 357, 2631–2649 (1999)

    Article  ADS  Google Scholar 

  49. T. Nishinaga, P. Ge, C. Huo, J. He, T. Nakamura: Melt growth of striation and etch-pit free GaSb under microgravity, J. Cryst. Growth 174, 96–100 (1997)

    Article  ADS  Google Scholar 

  50. P. Dold: Czochralski growth of doped germanium with an applied rotating magnetic field, Cryst. Res. Technol. 38, 659–668 (2003)

    Article  MathSciNet  Google Scholar 

  51. P. Rudolph: Travelling magnetic fields applied to bulk crystal growth from the melt: The step from basic research to industrial scale, J. Cryst. Growth 310, 1298–1306 (2008)

    Article  ADS  Google Scholar 

  52. H. Scheel: Theoretical and experimental solutions of the striation problem. In: Crystal Growth Technology, ed. by H.J. Scheel, T. Fukuda (Wiley, New York 2003), Chap. 4

    Chapter  Google Scholar 

  53. N. Herres, A.R. Lang: X-ray topography of natural beryl using synchroton and conventional sources, J. Appl. Cryst. 16, 47–56 (1983)

    Article  Google Scholar 

  54. H. Klapper: Röntgentopographische Untersuchungen von Gitterstörungen in Benzil-Einkristallen, J. Cryst. Growth 10, 13–25 (1971), in German

    Article  ADS  Google Scholar 

  55. K. Maeda, A. Sonoda, H. Miki, Y. Asakuma, K. Fukui: Synergy of organic dyes for KDP crystal growth, Cryst. Res. Technol. 39, 1006–1013 (2004)

    Article  Google Scholar 

  56. I.L. Smolʼskii, A.A. Chernov, G.Y. Kutznetsov, V.F. Parvov, V.N. Rozhanskii: Vicinal sectoriality in growth sectors of {011} faces of ADP crystals, Sov. Phys. Crystallogr. 30, 563–567 (1985)

    Google Scholar 

  57. I.L.. Smolʼskii, N.P. Zaitseva: Characteristic defects and imperfections in KDP crystals grown at high rates. In: Growth of Crystals, Vol. 19, ed. by E.I. Givargizov, S.A. Grinberg (Plenum, New York 1995) pp. 173–185

    Google Scholar 

  58. J.J. De Yoreo, T.A. Land, L.N. Rashkovich, T.A. Onischenko, J.D. Lee, O.V. Monovskii, N.P. Zaitseva: The effect of dislocation cores on growth hillock vicinality and normal growth rates of KDP 101 surfaces, J. Cryst. Growth 182, 442–460 (1997)

    Article  ADS  Google Scholar 

  59. A.G. Shtukenberg, Y.O. Punin, E. Haegele, H. Klapper: On the origin of inhomogeneity of anomalous birefringence in mixed crystals: An example of alums, Phys. Chem. Miner. 28, 665–674 (2001)

    Article  ADS  Google Scholar 

  60. H. Klapper, R.A. Becker, D. Schmiemann, A. Faber: Growth-sector boundaries and growth-rate dispersion in potassium alum crystals, Cryst. Res. Technol. 37, 747–757 (2002)

    Article  Google Scholar 

  61. W.J.P. Van Enckevort, H. Klapper: Observation of growth steps with full and half unit-cell heights on the 001 faces of NiSO4 ⋅6H2O in relation to the defect structure, J. Cryst. Growth 80, 91–103 (1987)

    Article  ADS  Google Scholar 

  62. H. Kanda, M. Akaishi, S. Yamaoka: Impurity distribution among vicinal slopes of growth spirals developing on the {111} faces of synthetic diamonds, J. Cryst. Growth 108, 421–424 (1991)

    Article  ADS  Google Scholar 

  63. J.J. De Yoreo, Z.U. Rek, N.P. Zaitseva, B.W. Woods: Sources of optical distortion in rapidly grown crystals of KH_2PO_4, J. Cryst. Growth 166, 291–297 (1996)

    Article  ADS  Google Scholar 

  64. K. Fujioka, S. Matsuo, T. Kanabe, H. Fujita, M. Nakjatsuka: Optical properties of rapidly grown KDP crystals improved by thermal conditioning, J. Cryst. Growth 181, 265–271 (1997)

    Article  ADS  Google Scholar 

  65. N. Zaitseva, L. Carman, I. Smolsky, R. Torres, M. Yan: The effect of impurities and supersaturation on the rapid growth of KDP crystals, J. Cryst. Growth 204, 512–524 (1999)

    Article  ADS  Google Scholar 

  66. T. Bullard, M. Kurimoto, S. Avagyan, S.H. Jang, B. Kahr: Luminescence imaging of growth hillocks in potassium hydrogen phthalate, ACA Transaction 39, 62–72 (2004)

    Google Scholar 

  67. A.R. Lang, V.F. Miuskov: Dislocations and fault surfaces in synthetic quartz, J. Appl. Phys. 38, 2477–2483 (1967), esp. p. 2482

    Article  ADS  Google Scholar 

  68. A.R. Lang, V.F. Miuskov: Defects in natural and synthetic quartz. In: Growth of Crystals, Vol. 7, ed. by N.N. Sheftal (Consultants Bureau, New York 1969) pp. 112–123, esp. p. 122

    Google Scholar 

  69. T. Hahn, H. Klapper: Twinning of crystals. In: International Tables for Crystallography, Vol. D (Kluwer Academic, Dordrecht 2003) pp. 393–448

    Chapter  Google Scholar 

  70. W. Schmidt, R. Weiss: Dislocation propagation in Czochralski grown gadolinium gallium garnet, J. Cryst. Growth 43, 515–525 (1978)

    Article  ADS  Google Scholar 

  71. B. Cockayne, J.M. Roslington, A.W. Vere: Microscopic strain in facetted regions of garnet crystals, J. Mater. Sci. 8, 382–384 (1973)

    Article  ADS  Google Scholar 

  72. W.T. Stacy: Dislocations, facet regions and grown striations in garnet substrates and layers, J. Cryst. Growth 24/25, 137–143 (1974)

    Article  ADS  Google Scholar 

  73. A. Shtukenberg, Y. Punin, B. Kahr: Optically anomalous crystals. In: Springer Series in Solid State Science (Springer, Berlin, Heidelberg 2007)

    Google Scholar 

  74. R. von Brauns: Die optischen Anomalien der Krystalle (S. Hirzel, Leipzig 1891), in German

    Google Scholar 

  75. B. Kahr, J.M. McBride: Optically anomalous crystals, Angew. Chem. Int. Ed. 31, 1–26 (1992)

    Article  Google Scholar 

  76. H. Klapper: Reconstruction of the growth history of crystals by analysis of growth defects. In: Crystal Growth of Technologically Important Electronic Materials, ed. by K. Byrappa, T. Ohachi, H. Klapper, R. Fornari (Allied Publishers PVT, New Delhi 2003)

    Google Scholar 

  77. J.N. Sherwood, T. Shiripathi: Evidence for the role of pure edge dislocations in crystal growth, J. Cryst. Growth 88, 358–364 (1988)

    Article  ADS  Google Scholar 

  78. H.L. Bhat, R.I. Ristic, J.N. Sherwood, T. Shiripathi: Dislocation characterization in crystal of potash alum grown by seeded solution growth und conditions of low supersaturation, J. Cryst. Growth 121, 709–716 (1992)

    Article  ADS  Google Scholar 

  79. R.I. Ristic, B. Shekunov, J.N. Sherwood: Long and short period growth rate variations in potash alum, J. Cryst. Growth 160, 330–336 (1996)

    Article  ADS  Google Scholar 

  80. E. Billig: Some defects in crystals grown from the melt I: Defects caused by thermal stresses, Proc. R. Soc. Lond. A 235, 37–55 (1956)

    Article  ADS  Google Scholar 

  81. V.L. Indenbom: Ein Beitrag zur Entstehung von Spannungen und Versetzungen beim Kristallwachstum, Kristall und Technik 14, 493–507 (1979), in German

    Article  Google Scholar 

  82. P. Möck: Comparison of experiments and theories for plastic deformation in thermally processed GaAs wafers, Cryst. Res. Technol. 35, 529–540 (2000)

    Article  Google Scholar 

  83. P. Rudolph: Dislocation cell structures in melt-grown semiconductor compound crystals, Cryst. Res. Technol. 40, 7–20 (2005)

    Article  Google Scholar 

  84. Y.M. Fishman: X-ray topographic study of the dislocations produced in potassium dihydrogen phosphate crystals by growth from solution, Sov. Phys. Crystallogr. 17, 524–527 (1972)

    Google Scholar 

  85. G. Dhanaraj, M. Dudley, D. Bliss, M. Callahan, M. Harris: Growth and process induced dislocations in zinc oxide crystals, J. Cryst. Growth 297, 74–79 (2006)

    Article  ADS  Google Scholar 

  86. G. Neuroth: Der Einfluß von Einschlußbildung und mechanischer Verletzung auf das Wachstum und die Perfektion von Kristallen. Ph.D. Thesis (University of Bonn, Bonn 1996), (Shaker, Aachen 1996), in German

    Google Scholar 

  87. A.J. Forty: Direct observation of dislocations in crystals, Adv. Phys. 3, 1–25 (1954)

    Article  ADS  Google Scholar 

  88. G.G. Lemmlein, E.D. Dukova: Formation of screw dislocations in the growth process of a crystal, Sov. Phys. Crystallogr. 1, 269–273 (1956)

    Google Scholar 

  89. M.I. Kozlovskii: Formation of screw dislocations in the growth of a crystal around solid particles, Sov. Phys. Crystallogr. 3, 205–211 (1958/60)

    Google Scholar 

  90. M.I. Kozlovskii: Formation of screw dislocations at the junction of two layers spreading over the surface of a crystal, Sov. Phys. Crystallogr. 3, 236–238 (1958/60)

    Google Scholar 

  91. M. Dudley, X.R. Huang, W. Huang, A. Powell, S. Wang, P. Neudeck, M. Skowronski: The mechanism of micropipe nucleation at inclusions in silicon carbide, Appl. Phys. Lett. 75, 784–786 (1999)

    Article  ADS  Google Scholar 

  92. W.T. Read: Dislocations in Crystals (McGraw-Hill, New York 1953) p. 47

    MATH  Google Scholar 

  93. D. Hull: Introduction to Dislocations, Vol. 2 (Pergamon, Oxford 1975) pp. 229–235

    Google Scholar 

  94. J.P. Hirth, J. Lothe: Theory of Dislocations (McGraw-Hill, New York 1968)

    Google Scholar 

  95. J. Weertmann, J.R. Weertmann: Elementary Dislocation Theory (Macmillan, New York 1964) p. 137

    Google Scholar 

  96. H. Klapper: Vorzugsrichtungen eingewachsener Versetzungen in lösungsgezüchteten Kristallen. Habilitation Thesis, (Technical University (RWTH) Aachen 1975), in German

    Google Scholar 

  97. J. Lothe: Force on dislocations emerging at free surfaces, Phys. Nor. 2, 154–157 (1967)

    Google Scholar 

  98. J.B. Eshelby, W.T. Read, W. Shockley: Anisotropic elasticity with applications to dislocation theory, Acta Metall. 1, 251–259 (1953)

    Article  Google Scholar 

  99. H. Klapper, Y.M. Fishman, V.G. Lutsau: Elastic energy and line directions of grown-in dislocations in KDP crystals, Phys. Status Solidi (a) 21, 115–121 (1974)

    Article  ADS  Google Scholar 

  100. H. Klapper: Elastische Energie und Vorzugsrichtungen geradliniger Versetzungen in aus der Lösung gewachsenen organischen Kristallen. I. Benzil, Phys. Status Solidi (a) 14, 99–106 (1972), in German

    Article  ADS  Google Scholar 

  101. H. Klapper: Elastische Energie und Vorzugsrichtungen geradliniger Versetzungen in aus der Lösung gewachsenen organischen Kristallen. II. Thioharnstoff, Phys. Status Solidi (a) 14, 443–451 (1972), in German

    Article  ADS  Google Scholar 

  102. H. Klapper: Röntgentopographische Untersuchungen am Lithiumformiat-Monohydrat, Z. Naturforsch. 28a, 614–622 (1973), in German

    ADS  Google Scholar 

  103. H. Klapper, H. Küppers: Directions of dislocation lines in crystals of ammonium hydrogen oxalate hemihydrate grown from solution, Acta Cryst. A 29, 495–503 (1973), (correction: read K/ cos α instead of K cos α)

    Article  Google Scholar 

  104. D.F. Croxall, R.C.C. Ward, C.A. Wallace, R.C. Kell: Hydrothermal growth and investigation of Li-doped zinc oxide crystals of high purity and perfection, J. Cryst. Growth 22, 117–124 (1974)

    Article  ADS  Google Scholar 

  105. U. Alter, G. Voigt: Direction change of dislocations on passing a growth-sector boundary in quartz crystals, Cryst. Res. Technol. 19, 1619–1623 (1984)

    Article  Google Scholar 

  106. A. Sakai, H. Sunakawa, A. Usui: Defect structure in selectively grown GaN films with low threading dislocation density, Appl. Phys. Lett. 71, 2259–2261 (1997)

    Article  ADS  Google Scholar 

  107. Z. Liliental-Weber, M. Benamara, W. Snider, J. Washburn, J. Park, P.A. Grudowski, C.J. Eiting, R.D. Dupuis: TEM study of defects in laterally overgrown GaN layers, MRS Internet J. Nitride Semicond. Res. 4s1, 4.6 (1999)

    Google Scholar 

  108. H. Sunakawa, A. Kimura, A. Usui: Self-organized propagation of dislocations in GaN films during epitaxial lateral overgrowth, Appl. Phys. Lett. 76, 442–444 (2000)

    Article  ADS  Google Scholar 

  109. P. Venégues, B. Beaumont, V. Bousquet, M. Vaille, P. Gibart: Reduction mechanisms of defect densities in GaN using one- or two-step epitaxial lateral overgrowth methods, J. Appl. Phys. 87, 4175–4181 (2000)

    Article  ADS  Google Scholar 

  110. S. Gradezcak, P. Stadelman, V. Wagner, M. Ilegems: Bending of dislocations in GaN during epitaxial lateral overgrowth, Appl. Phys. Lett. 85, 4648–4650 (2004)

    Article  ADS  Google Scholar 

  111. J. Bai, J.-S. Park, Z. Cheng, M. Curtin, B. Adekore, M. Carroll, A. Lochtefeld, M. Dudley: Study of the defect elimination mechanism in aspect ratio trapping Ge growth, Appl. Phys. Lett. 90, 101902 (2007)

    Article  ADS  Google Scholar 

  112. N. Zaitseva, L. Carman, I. Smolsky: Habit control during rapid growth of KDP and DKDP crystals, J. Cryst. Growth 241, 363–373 (2002)

    Article  ADS  Google Scholar 

  113. G.R. Ester, P.J. Halfpenny: An investigation of growth-induced defects in crystals of potassium hydrogen phthalate, Philos. Mag. A 79, 593–608 (1999)

    Article  ADS  Google Scholar 

  114. G.R. Ester, R. Price, P.J. Halfpenny: The relationship between crystal growth and defect structure: A study of potassium hydrogen phthalate using x-ray topography and atomic force microscopy, J. Phys. D: Appl. Phys. 32, A128–A132 (1999)

    Article  ADS  Google Scholar 

  115. G. Neuroth, H. Klapper: Dislocation reactions in Czochralski-grown salol crystals, Z. Kristallogr. 209, 216–220 (1994)

    Google Scholar 

  116. I.L. Smolsky, E.B. Rudneva: Effect of the surface morphology on the grown-in dislocation orientations in KDP crystals, Phys. Status Solidi (a) 141, 99–107 (1994)

    Article  ADS  Google Scholar 

  117. T. Watanabe, K. Izumi: Growth and perfection of tetraoxane crystals, J. Cryst. Growth 46, 747–756 (1979)

    Article  ADS  Google Scholar 

  118. K. Izumi: Lattice defects in normal alcohol crystals, Jpn. J. Appl. Phys. 16, 2103–2108 (1977)

    Article  ADS  Google Scholar 

  119. H. Klapper: Röntgentopographische Untersuchungen der Defektstrukturen im Thioharnstoff, J. Cryst. Growth 15, 281–287 (1972), in German

    Article  ADS  Google Scholar 

  120. F.C. Frank: The influence of dislocations on crystal growth, Disc. Faraday Soc. 5, 48–54 (1949), and 66–68

    Article  Google Scholar 

  121. C.F. Frank: Crystal growth and dislocations, Adv. Phys. 1, 91–109 (1952)

    Article  ADS  MATH  Google Scholar 

  122. W.K. Burton, N. Cabrera, F.C. Frank: The growth of crystals and the equilibrium structure of their surfaces, Philos. Trans. R. Soc. Lond. A 243, 299–358 (1951), especially Part II, pp. 310–323

    Article  ADS  MathSciNet  MATH  Google Scholar 

  123. H.P. Strunk: Edge dislocation may cause growth spirals, J. Cryst. Growth 160, 184–185 (1996)

    Article  ADS  Google Scholar 

  124. N.-B. Ming: Defect mechanism of crystal growth and their kinetics, J. Cryst. Growth 128, 104–112 (1993)

    Article  ADS  Google Scholar 

  125. E. Bauser, H. Strunk: Analysis of dislocations creating monomolecular growth steps, J. Cryst. Growth 51, 362–366 (1981)

    Article  ADS  Google Scholar 

  126. F.C. Frank: “Edge” dislocations as crystal growth sources, J. Cryst. Growth 51, 367–368 (1981)

    Article  ADS  Google Scholar 

  127. L.J. Giling, B. Dam: A “rough heart” model for “edge” dislocations which act as persistent growth sources, J. Cryst. Growth 67, 400–403 (1984)

    Article  ADS  Google Scholar 

  128. H. Gottschalk, G. Patzer, H. Alexander: Stacking-fault energy and ionicity of cubic III–V compounds, Phys. Status Solidi (a) 45, 207–217 (1978)

    Article  ADS  Google Scholar 

  129. T.W. Donnelly: Kinetic considerations in the genesis of growth twinning, Am. Mineral. 52, 1–12 (1967)

    Google Scholar 

  130. H. Carstens: Kinetic consideration in the genesis of growth twinning: A discussion, Am. Mineral. 53, 342–344 (1968)

    Google Scholar 

  131. T.W. Donnelly: Kinetic consideration in the genesis of growth twins: A reply, Am. Mineral. 53, 344–346 (1968)

    Google Scholar 

  132. V. Janovec, T. Hahn, H. Klapper: Twinning and domain structures. In: International Tables for Crystallography, Vol. D (Kluwer, Dordrecht 2003) pp. 377–378

    Chapter  Google Scholar 

  133. V. Janovec, J. Přívratská: Domain structures. In: International Tables for Crystallography, Vol. D (Kluwer, Dordrecht 2003) pp. 449–505

    Chapter  Google Scholar 

  134. F.D. Bloss: Crystallography and Crystal Chemistry (Rinehart & Winston, New York 1971) pp. 324–338

    Google Scholar 

  135. C. Giacovazzo (Ed.): Fundamentals of Crystallography (University Press, Oxford 1992) pp. 80–87, and 133-140

    Google Scholar 

  136. C. Frondel: Silica minerals. In: The System of Mineralogy, Vol. III, 7th edn. (Wiley, New York 1962) pp. 75–99

    Google Scholar 

  137. J.W. Faust Jr., H.F. John: The growth of semiconductor crystals from solution using the twin-plane reentrant-edge mechanism, J. Phys. Chem. Solids 25, 1407–1415 (1964)

    Article  ADS  Google Scholar 

  138. R. Jagannathan, R.V. Mehta, J.A. Timmons, D.L. Black: Anisotropic growth of twinned cubic crystals, Phys. Rev. B 48, 13261–13265 (1993)

    Article  ADS  Google Scholar 

  139. R. Jagannathan, R.V. Mehta, J.A. Timmons, D.L. Black: Reply to comment on anisotropic growth of twinned cubic crystals, Phys. Rev. B 51, 8655 (1995), following the comment by B.W. van de Waal, Phys. Rev. B 51, 8653–8654 (1995)

    Article  ADS  Google Scholar 

  140. G. Bögels, T.M. Pot, H. Meekes, P. Bennema, D. Bollen: Side-face structure for lateral growth of tabular silver bromide crystals, Acta Cryst. A 53, 84–94 (1997)

    Article  Google Scholar 

  141. G. Bögels, H. Meekes, P. Bennema, D. Bollen: The role of {100} side faces for lateral growth of tabular silver bromide crystals, J. Cryst. Growth 191, 446–456 (1998)

    Article  ADS  Google Scholar 

  142. G. Bögels, J.G. Buijnsters, S.A.C. Verhaegen, H. Meekes, P. Bennema, D. Bollen: Morphology and growth mechanism of multiply twinned AgBr and AgCl needle crystals, J. Cryst. Growth 203, 554–563 (1999)

    Article  ADS  Google Scholar 

  143. C.A. Wallace, E.A.D. White: The morphology and twinning of solution-grown corundum crystals. In: Crystal Growth, ed. by H.S. Peiser (Pergamon, Oxford 1967) pp. 431–435, supplement to Phys. Chem. Solids

    Google Scholar 

  144. M. Senechal: The genesis of growth twins, Sov. Phys. Crystallogr. 25, 520–524 (1980)

    MathSciNet  Google Scholar 

  145. H. Hofmeister: Forty years study of fivefold twinned structures in small particles and thin films, Cryst. Res. Technol. 33, 3–25 (1998), especially Sect. 4

    Article  Google Scholar 

  146. I. Sunagawa, L. Taijing, V.S. Balitsky: Generation of Brazil and Dauphiné twins in synthetic amethyst, Phys. Chem. Miner. 17, 320–325 (1990)

    Article  ADS  Google Scholar 

  147. A.C. MacLaren, D.R. Pitkethly: The twinning microstructure and growth of amethyst quartz, Phys. Chem. Miner. 8, 128–135 (1982)

    Article  ADS  Google Scholar 

  148. H. Klapper, T. Hahn, S.J. Chung: Optical, pyroelectric and x-ray topographic studies of twin domains and twin boundaries in KLiSO_4, Acta Cryst. B 43, 147–159 (1987)

    Article  Google Scholar 

  149. M.J. Buerger: The genesis of twin crystals, Am. Mineral. 30, 469–482 (1945)

    Google Scholar 

  150. P. Hartmann: On the morphology of growth twins, Z. Kristallogr. 107, 225–237 (1956)

    Article  Google Scholar 

  151. R. Docherty, A. El-Korashi, H.-D. Jennissen, H. Klapper, K.J. Roberts, T. Scheffen-Lauenroth: Synchroton Laue topographic studies of pseudo-hexagonal twinning, J. Appl. Cryst. 21, 406–415 (1988)

    Article  Google Scholar 

  152. N.-B. Ming, I. Sunagawa: Twin lamellae as possible self-perpetuating steps sources, J. Cryst. Growth 87, 13–17 (1988)

    Article  ADS  Google Scholar 

  153. N.-B. Ming, K. Tsukamato, I. Sunagawa, A.A. Chernov: Stacking faults as self-perpetuating step sources, J. Cryst. Growth 91, 11–19 (1988)

    Article  ADS  Google Scholar 

  154. H. Li, X.-D. Peng, N.-B. Ming: Re-entrant corner mechanism of fcc crystal growth of A-type twin lamella: The Monte-Carlo simulation approach, J. Cryst. Growth 139, 129–133 (1994)

    Article  ADS  Google Scholar 

  155. H. Li, N.-B. Ming: Growth mechanism and kinetics on re-entrant corner and twin lamellae in a fcc crystal, J. Cryst. Growth 152, 228–234 (1995)

    Article  ADS  Google Scholar 

  156. R.-W. Lee, U.-J. Chung, N.M. Hsang, D.-Y. Kim: Growth process of the ridge-trough faces of a twinned crystal, Acta Cryst. A 61, 405–410 (2005)

    Article  Google Scholar 

  157. R. Boistelle, D. Aquilano: Interaction energies at twin boundaries and effects of the dihedral re-entrant and salient angles on the grown morphology of twinned crystals, Acta Cryst. A 34, 406–413 (1978)

    Article  Google Scholar 

  158. I.M. Dawson: The study of crystal growth with the electron microscope II. The observation of growth steps in the paraffin n-hexane, Proc. R. Soc. Lond. A 214, 72–79 (1952)

    Article  ADS  Google Scholar 

  159. R.S. Wagner: On the growth of Ge dendrites, Acta Metal. 8, 57–60 (1960)

    Article  Google Scholar 

  160. D.R. Hamilton, R.G. Seidensticker: Propagation mechanism of germanium dendrites, J. Appl. Phys. 31, 1165–1168 (1960)

    Article  ADS  Google Scholar 

  161. B. van de Waal: Cross-twinning model of fcc crystal growth, J. Cryst. Growth 158, 153–165 (1996)

    Article  ADS  Google Scholar 

  162. G. Roth, D. Ewert, G. Heger, M. Hervieu, C. Michel, B. Raveau, B. DʼYvoire, A. Revcolevschi: Phase transformation and microtwinning in crystals of the high-Tc superconductor YBa_2Cu_3O_8-x, Z. Phys. B 69, 21–27 (1987)

    Article  ADS  Google Scholar 

  163. I.S. Zheludev: Crystallography and spontaneous polarisation. In: Physics of Crystalline Dielectrics, Vol 1 (Plenum Press, New York 1971)

    Google Scholar 

  164. M. Nakatsuka, K. Fujioka, T. Kanabe, H. Fujita: Rapid growth of over 50 mm/day of water-soluble KDP crystal, J. Cryst. Growth 171, 531–537 (1997)

    Article  ADS  Google Scholar 

  165. H. Klapper, I.L. Smolsky, A.E. Haegele: Rapid growth from solution. In: Crystal Growth of Technologically Important Electronic Materials, ed. by K. Byrappa, T. Ohachi, H. Klapper, R. Fornari (Allied Publishers PVT, New Delhi 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Klapper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Klapper, H. (2010). Generation and Propagation of Defects During Crystal Growth. In: Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M. (eds) Springer Handbook of Crystal Growth. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74761-1_4

Download citation

Publish with us

Policies and ethics