Skip to main content

Bulk Crystal Growth of Ternary III–V Semiconductors

  • Chapter
Springer Handbook of Crystal Growth

Part of the book series: Springer Handbooks ((SHB))

Abstract

Ternary semiconductor substrates with variable bandgaps and lattice constants are key enablers for next-generation advanced electronic, optoelectronic, and photovoltaic devices. This chapter presents a comprehensive review of the crystal growth challenges and methods to grow large-diameter, compositionally homogeneous, bulk ternary III–V semiconductors based on As, P, and Sb compounds such as GaInSb, GaInAs, InAsP, AlGaSb, etc. The Bridgman and gradient freezing techniques are the most successfully used methods for growing ternary crystals with a wide range of alloy compositions. Control of heat and mass transport during the growth of ternary compounds is crucial for achieving high-quality crystals. Melt mixing and melt replenishment methods are discussed. The scale-up issues for commercial viability of ternary substrates is also outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACRT:

accelerated crucible rotation technique

BPS:

Burton–Prim–Slichter

CZ:

Czochralski

DI:

deionized

HB:

horizontal Bridgman

HF:

hydrofluoric acid

HGF:

horizontal gradient freezing

IR:

infrared

LEC:

liquid encapsulation Czochralski

LPE:

liquid-phase epitaxy

MBE:

molecular-beam epitaxy

MOCVD:

metalorganic chemical vapor deposition

MOCVD:

molecular chemical vapor deposition

MTDATA:

metallurgical thermochemistry database

NPL:

National Physical Laboratory

OMVPE:

organometallic vapor-phase epitaxy

PD:

Peltier interface demarcation

PD:

photodiode

PID:

proportional–integral–differential

RF:

radiofrequency

SHM:

submerged heater method

THM:

traveling heater method

VB:

valence band

VB:

vertical Bridgman

VGF:

vertical gradient freeze

pBN:

pyrolytic boron nitride

References

  1. V. Swaminathan, A.T. Macrander: Materials Aspects of GaAs and InP Based Structures (Prentice Hall, New Jersey 1991)

    Google Scholar 

  2. M. Neuberger: III–V ternary semiconducting compounds-data tables. In: Handbook of Electronic Materials, Vol. 7 (IFI/Plenum, New York 1972)

    Google Scholar 

  3. O. Madelung, M. Schulz (eds): Landolt–Börnstein, numerical data and functional relationships. In: Science and Technology, Semiconductors, Vol. 22(A) (Springer, New York 1987)

    Google Scholar 

  4. W.B. Pearson: A Handbook of Lattice Spacings and Structures of Metals and Alloys, Vol. 1 (Pergamon, New York 1956), Vol. 2 (1967)

    Google Scholar 

  5. M.B. Panish, M. Ilegems: Phase equilibria in ternary III–V systems, Prog. Solid State Chem. 7, 39–83 (1972)

    Article  Google Scholar 

  6. H.C. Casey Jr., M.B. Panish: Heterojunction Lasers, Part B – Materials and Operating Characteristics, Quantum Electronics Series (Academic, New York 1978)

    Google Scholar 

  7. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan: Band parameters for III–V compound semiconductors and their alloys, J. Appl. Phys. 89(11), 5815–5875 (2001)

    Article  ADS  Google Scholar 

  8. Special issue on: Compliant and alternative substrate technology, J. Electron. Mater. 29 (2000)

    Google Scholar 

  9. K. Otsubo, H. Shoji, T. Kusunoki, T. Suzuki, T. Uchida, Y. Nishijina, K. Nakajima, H. Ishikawa: High T 0 (140 K) and low-threshold long-wavelength strained quantum well lasers on InGaAs ternary substances, Electron. Lett. 33, 1795–1797 (1997)

    Article  Google Scholar 

  10. H. Ishikawa: Theoretical gain of strained quantum well grown on an InGaAs ternary substrate, Appl. Phys. Lett. 63, 712–714 (1993)

    Article  ADS  Google Scholar 

  11. K. Otsubo, Y. Nishijima, T. Uchida, H. Shoji, K. Nakajima, H. Ishikawa: 1.3 μ m InGaAs/InAlGaAs strained quantum well laser on InGaAs ternary substrates, Jpn. J. Appl. Phys. 38, L312–L314 (1999)

    Article  ADS  Google Scholar 

  12. H.X. Yuan, D. Grubisic, T.T.S. Wong: GaInSb photodetectors developed from single crystal bulk grown materials, J. Electron. Mater. 28, 39–42 (1999)

    Article  ADS  Google Scholar 

  13. T. Refaat, M.N. Abedin, V. Bhagwat, I.B. Bhat, P.S. Dutta, U.N. Singh: InGaSb photodetectors using InGaSb substrate for 2 μ m applications, Appl. Phys. Lett. 85(11), 1874–1876 (2004)

    Article  ADS  Google Scholar 

  14. P.S. Dutta, J.M. Borrego, H. Ehsani, G. Rajagopalan, I.B. Bhat, R.J. Gutmann, G. Nichols, P.F. Baldasaro: GaSb and GaInSb thermophotovoltaic cells using diffused junction technology in bulk substrates,, AIP Conf. Proc. 653, 392–401 (2002)

    Article  ADS  Google Scholar 

  15. J. Merrill, D.C. Senft: Directions and materials challenges in high performance photovoltaics, J. Miner. Met. Mater. Soc. (JOM) 59(12), 26–30 (2007)

    Article  Google Scholar 

  16. P.S. Dutta, H.L. Bhat, V. Kumar: The physics and technology of gallium antimonide: An emerging optoelectronic material, J. Appl. Phys. 81, 5821–5870 (1997)

    Article  ADS  Google Scholar 

  17. K.J. Bachmann, F.A. Thiel, H. Schreiber Jr.: Melt and solution growth of bulk single crystals of quaternary III–V alloys, Prog. Cryst. Growth Charact. 2, 171–206 (1979)

    Article  Google Scholar 

  18. P.S. Dutta: III–V ternary bulk substrate growth technology: a review, J. Cryst. Growth 275, 106–112 (2005)

    Article  ADS  Google Scholar 

  19. W.A. Bonner, B.J. Skromme, E. Berry, H.L. Gilchrist, R.E. Nahory: Bulk single crystal GaInAs: LEC growth and characterization, Proc. 15th Int. Symp. GaAs Relat. Compd., Vol. 96, ed. by J.S. Harris (Institute of Physics, Bristol 1989) pp. 337–342

    Google Scholar 

  20. W.A. Bonner, B. Lent, D.J. Freschi, W. Hoke: Substrate quality of III–V single crystals for II-VI device applications: Growth and characterization, Proc. SPIE 2228, 33–43 (1994)

    Article  ADS  Google Scholar 

  21. S. Kodama, Y. Furumura, K. Kinoshita, H. Kato, S. Yoda: Single crystalline bulk growth of In_0.3Ga_0.7As on GaAs seed using the multi-component zone melting method, J. Cryst. Growth 208, 165–170 (2000)

    Article  ADS  Google Scholar 

  22. A. Mitric, T. Duffar, C. Diaz-Guerra, V. Corregidor, L.C. Alves, C. Garnier, G. Vian: Growth of GaInSb alloys by vertical Bridgman technique under alternating magnetic field, J. Cryst. Growth 287(2), 224–229 (2006)

    Article  ADS  Google Scholar 

  23. A. Tanaka, J. Shintani, M. Kimura, T. Sukegawa: Multi-step pulling of GaInSb bulk crystal from ternary solution, J. Cryst. Growth 209, 625–629 (2000)

    Article  ADS  Google Scholar 

  24. J.P. Garandet, T. Duffar, J.J. Favier: Vertical gradient freeze growth of ternary GaSb-InSb crystals, J. Cryst. Growth 106, 426–436 (1990)

    Article  ADS  Google Scholar 

  25. P.S. Dutta, A.G. Ostrogorsky: Suppression of cracks in In_xGa_1-xSb crystals through forced convection in the melt, J. Cryst. Growth 194, 1–7 (1998)

    Article  ADS  Google Scholar 

  26. P.S. Dutta, A.G. Ostrogorsky: Melt growth of quasi-binary (GaSb)_1-x(InAs)_x crystals, J. Cryst. Growth 198/199, 384–389 (1999)

    Article  ADS  Google Scholar 

  27. P.S. Dutta, A.G. Ostrogorsky: Strong band gap narrowing in quasi-binary (GaSb)_1-x(InAs)_x crystals grown from melt, J. Cryst. Growth 197, 1–6 (1999)

    Article  ADS  Google Scholar 

  28. P.S. Dutta, H.J. Kim, A. Chandola: Controlling heat and mass transport during the vertical Bridgman growth of homogeneous ternary III–V semiconductor alloys, Trans. Indian Inst. Met. 60(2–3), 155–160 (2007)

    Google Scholar 

  29. P.S. Dutta, T.R. Miller: Engineering phase formation thermo-chemistry for crystal growth of homogeneous ternary and quaternary III–V compound semiconductors from melts, J. Electron. Mater. 29, 956–963 (2000)

    Article  ADS  Google Scholar 

  30. P.S. Dutta, T.R. Miller: Multicomponent homogeneous alloys and method for making same, US Patent 6613162 B1 (2003)

    Google Scholar 

  31. P.S. Dutta, A.G. Ostrogorsky: Alloys and methods for their preparation, US Patent 6273969 B1 (2001)

    Google Scholar 

  32. R. Pino, Y. Ko, P.S. Dutta: High-resistivity GaSb bulk crystals grown by the vertical Bridgman method, J. Electron. Mater. 33(9), 1012–1015 (2004)

    Article  ADS  Google Scholar 

  33. A. Chandola, H.J. Kim, S. Guha, L. Gonzalez, V. Kumar, P.S. Dutta: Below band-gap optical absorption in Ga_xIn_1-xSb alloys, J. Appl. Phys. 98, 093103–093109 (2005)

    Article  ADS  Google Scholar 

  34. H.J. Kim, A. Chandola, S. Guha, L. Gonzalez, V. Kumar, P.S. Dutta: Influence of native defects on the infrared transmission of undoped Ga_1-xIn_xSb bulk crystals, J. Electron. Mater. 34(11), 1391–1398 (2005)

    Article  ADS  Google Scholar 

  35. A. Chandola, R. Pino, P.S. Dutta: Below bandgap optical absorption in tellurium-doped GaSb, Semicond. Sci. Technol. 20, 886–893 (2005)

    Article  ADS  Google Scholar 

  36. R. Pino, Y. Ko, P.S. Dutta: Native defect compensation in III–V antimonide bulk substrates, Int. J. High-Speed Electron. Syst. 14(3), 658–663 (2004)

    Article  Google Scholar 

  37. R. Pino, Y. Ko, P.S. Dutta: Enhancement of infrared transmission in GaSb bulk crystals by carrier compensation, J. Appl. Phys. 96(2), 1064–1067 (2004)

    Article  ADS  Google Scholar 

  38. R. Pino, Y. Ko, P.S. Dutta, S. Guha, L. Gonzalez: Burstein–Moss shift in impurity-compensated bulk Ga_1-xIn_xSb substrates, J. Appl. Phys. 96(9), 5349–5352 (2004)

    Article  ADS  Google Scholar 

  39. W.D. Lawson, S. Nielsen: Preparation of Single Crystals (Butterworths Scientific Publications, London 1958)

    Google Scholar 

  40. W.A. Gault, E.M. Monberg, J.E. Clemens: A novel application of the vertical gradient freeze method to the growth of high quality III–V crystals, J. Cryst. Growth 74, 491–506 (1986)

    Article  ADS  Google Scholar 

  41. I.R. Grant: InP crystal growth. In: Bulk Crystal Growth of Electronic, Optical and Optoelectronic Materials, ed. by P. Capper (Wiley, England 2005), Chap. 4

    Google Scholar 

  42. M.R. Brozel, I.R. Grant: Growth of GaAs. In: Bulk Crystal Growth of Electronic, Optical and Optoelectronic Materials, ed. by P. Capper (Wiley, England 2005), Chap. 2

    Google Scholar 

  43. T. Asahi, K. Kainosho, K. Kohiro, A. Noda, K. Sato, O. Oda: Growth of III–V and II–VI single crystals by the vertical gradient freeze method. In: Crystal Growth Technology, ed. by H.J. Scheel, T. Fukuda (Wiley, England 2003), Chap. 15

    Google Scholar 

  44. T. Kawase, M. Tatsumi, Y. Nishida: Growth technology of III–V single crystals for production. In: Crystal Growth Technology, ed. by H.J. Scheel, T. Fukuda (Wiley, England 2003), Chap. 16

    Google Scholar 

  45. P. Rudolph, M. Jurisch: Fundamental and technological aspects of Czochralski growth of high quality semi-insulating GaAs crystals. In: Crystal Growth Technology, ed. by H.J. Scheel, T. Fukuda (Wiley, England 2003), Chap. 14

    Google Scholar 

  46. N.B. Singh, S.S. Mani, J.D. Adam, S.R. Coriell, M.E. Glicksman, W.M.B. Duval, G.J. Santoro, R. DeWitt: Direct observations of interface instabilities, J. Cryst. Growth 166, 364–369 (1996)

    Article  ADS  Google Scholar 

  47. P. Capper, J.J.G. Gosney, C.L. Jones, M.J.T. Quelch: Quenching studies in Bridgman-grown Cd_xHg_1-xTe, J. Cryst. Growth 63, 154–164 (1983)

    Article  ADS  Google Scholar 

  48. P.S. Dutta, K.S. Sangunni, H.L. Bhat, V. Kumar: Experimental determination of melt–solid interface shapes and actual growth rates of gallium antimonide grown by vertical Bridgman technique, J. Cryst. Growth 141, 476–478 (1994)

    Article  ADS  Google Scholar 

  49. R.K. Route, M. Wolf, R.S. Feigelson: Interface studies during vertical Bridgman CdTe crystal growth, J. Cryst. Growth 70, 379–385 (1984)

    Article  ADS  Google Scholar 

  50. R. Singh, A.F. Witt, H.C. Gatos: Application of the Peltier effect for the determination of crystal growth rates, J. Electrochem. Soc. 115, 112–113 (1968)

    Article  Google Scholar 

  51. Y. Dabo, H. Nguyen Thi, S.R. Coriell, G.B. McFadden, Q. Li, B. Billia: Microsegregation in Peltier interface demarcation, J. Cryst. Growth 216, 483–494 (2000)

    Article  ADS  Google Scholar 

  52. L.L. Zheng, D.J. Larson Jr.: Thermoelectric effects on interface demarcation and directional solidification of bismuth, J. Cryst. Growth 180, 293–304 (1997)

    Article  ADS  Google Scholar 

  53. N. Duhanian, T. Duffar, C. Marin, E. Dieguez, J.P. Garandet, P. Dantan, G. Guiffant: Experimental study of the solid–liquid interface dynamics and chemical segregation in concentrated semiconductor alloy Bridgman growth, J. Cryst. Growth 275, 422–432 (2005)

    Article  ADS  Google Scholar 

  54. J.M. Bly, M.L. Kaforey, D.H. Matthiesen, A. Chait: Interface shape and growth rate analysis of Se/GaAs bulk crystals grown in the NASA crystal growth furnace (CGF), J. Cryst. Growth 174, 220–225 (1997)

    Article  ADS  Google Scholar 

  55. C.A. Wang, J.R. Carruthers, A.F. Witt: Growth rate dependence of the interface distribution coefficient in the system Ge-Ga, J. Cryst. Growth 60, 144–146 (1982)

    Article  ADS  Google Scholar 

  56. D.H. Matthiesen, M.E.K. Wiegel: Determination of the Peltier coeffcient of germanium in a vertical Bridgman–Stockbarger furnace, J. Cryst. Growth 174, 194–201 (1997)

    Article  ADS  Google Scholar 

  57. B. Fischer, J. Friedrich, H. Weimann, G. Muller: The use of time-dependent magnetic fields for control of convective flows in melt growth configurations, J. Cryst. Growth 198/199, 170–175 (1999)

    Article  ADS  Google Scholar 

  58. M.P. Volz, J.S. Walker, M. Schweizer, S.D. Cobb, F.R. Szofran: Bridgman growth of germanium crystals in a rotating magnetic field, J. Cryst. Growth 282, 305–312 (2005)

    Article  ADS  Google Scholar 

  59. Y. Ma, L.L. Zheng, D.J. Larson Jr.: Microstructure formation during BiMn/Bi eutectic growth with applied alternating electric fields, J. Cryst. Growth 262, 620–630 (2004)

    Article  ADS  Google Scholar 

  60. L.N. Brush, B.T. Murray: Crystal growth with applied current, J. Cryst. Growth 250, 170–173 (2003)

    Article  ADS  Google Scholar 

  61. T.A. Campbell, J.N. Koster: In situ visualization of constitutional supercooling within a Bridgman–Stockbarger system, J. Cryst. Growth 171, 1–11 (1997)

    Article  ADS  Google Scholar 

  62. T.A. Campbell, J.N. Koster: Visualization of liquid–solid interface morphologies in gallium subject to natural convection, J. Cryst. Growth 140, 414–425 (1994)

    Article  ADS  Google Scholar 

  63. T.A. Campbell, J.N. Koster: Radioscopic visualization of indium antimonide growth by the vertical Bridgman–Stockbarger technique, J. Cryst. Growth 147, 408–410 (1995)

    Article  ADS  Google Scholar 

  64. T. Schenk, H. Nguyen Thi, J. Gastaldi, G. Reinhart, V. Cristiglio, N. Mangelinck-Noel, H. Klein, J. Hartwig, B. Grushko, B. Billia, J. Baruchel: Application of synchrotron X-ray imaging to the study of directional solidification of aluminium-based alloys, J. Cryst. Growth 275, 201–208 (2005)

    Article  ADS  Google Scholar 

  65. P.G. Barber, R.K. Crouch, A.L. Fripp, W.J. Debnam, R.F. Berry, R. Simchick: A procedure to visualize the melt–solid interface in Bridgman grown germanium and lead tin telluride, J. Cryst. Growth 74, 228–230 (1986)

    Article  ADS  Google Scholar 

  66. R. K. Willardson, H.L. Goering: Preparation of III–V compounds, Compound Semiconductors, Vol. 1 (Reinhold Publishing Corporation, New York 1962)

    Google Scholar 

  67. M. Hansen (Ed.): Constitution of Binary Alloys (McGraw–Hill, New York 1958)

    Google Scholar 

  68. I. Grzegory, M. Bockowski, S. Porowski: GaN bulk substrates grown under pressure from solution in gallium. In: Bulk Crystal Growth of Electronic, Optical and Optoelectronic Materials, ed. by P. Capper (Wiley, England 2005), Chap. 6

    Google Scholar 

  69. P. Rudolph: Thermodynamic fundamentals of phase transitions applied to crystal growth processes. In: Crystal Growth Technology, ed. by H.J. Scheel, T. Fukuda (Wiley, England 2003), Chap. 2

    Google Scholar 

  70. C.T. Lin, E. Schonherr, H. Bender: Growth and characterization of doped and undoped AlSb single crystals, J. Cryst. Growth 104, 653–660 (1990)

    Article  ADS  Google Scholar 

  71. R. Pino, Y. Ko, P.S. Dutta: Adhesion-free growth of AlSb bulk crystals in silica crucibles, J. Cryst. Growth 290, 29–34 (2006)

    Article  ADS  Google Scholar 

  72. T. Duffar, J.M. Gourbil, P. Boiton, P. Dusserre, N. Eustathopoulos: Full encapsulation by molten salts during the Bridgman growth process, J. Cryst. Growth 179, 356–362 (1997)

    Article  ADS  Google Scholar 

  73. P.S. Dutta, A.G. Ostrogorsky, R.J. Gutmann: Bulk growth of GaSb and Ga_xIn_1-xSb, Proc. 3rd NREL Conf. Thermophotovolt. Gener. Electr., AIP Conf. Proc., Vol. 401 (1997) pp. 157–166

    Google Scholar 

  74. A.R. Clawson: Guide to References on III–V semiconductor chemical etching, Mater. Sci. Eng. R 31, 1–438 (2001)

    Article  Google Scholar 

  75. K. Ishida, H. Tokunaga, H. Ohtani, T. Nishizawa: Data base for calculating phase diagrams of III–V alloy semiconductors, J. Cryst. Growth 98, 140–147 (1989)

    Article  ADS  Google Scholar 

  76. G.B. Stringfellow: Calculation of ternary and quaternary III–V phase diagrams, J. Cryst. Growth 27, 21–34 (1974)

    Article  ADS  Google Scholar 

  77. T.C. Yu, R.F. Brebrick: Thermodynamic analysis of the In-Ga-Sb System, Metall. Mater. Trans. A 25, 2331–2340 (1994)

    Article  Google Scholar 

  78. A. Kumar: Growth of Thick Lattice Mis-matched Layers of GaInAsSb on GaAs Substrates from Quaternary Melts. Ph.D. Thesis (Rensselaer Polytechnic Institute, Troy, New York 2006)

    Google Scholar 

  79. W.G. Pfann: Zone-melting (Wiley, New York 1959)

    Google Scholar 

  80. W.A. Tiller: The Science of Crystallization: Macroscopic Phenomena and Defect Generation (Cambridge Univ. Press, New York 1991)

    Book  Google Scholar 

  81. J.A. Burton, R.C. Prim, W.P. Slichter: The distribution of solute in crystals grown from the melt. Part I. Theoretical, J. Chem. Phys. 21, 1987–1991 (1953)

    Article  ADS  Google Scholar 

  82. W.A. Tiller, K.A. Jackson, J.W. Rutter, B. Chalmers: The redistribution of solute atoms during the solidification of metals, Acta Metall. 1, 428–437 (1953)

    Article  Google Scholar 

  83. S. Sen, R.A. Lefever: Influence of magnetic field on vertical Bridgman–Stockbarger growth of InGaSb, J. Cryst. Growth 43, 526–530 (1978)

    Article  ADS  Google Scholar 

  84. H.P. Utech, M.C. Flemings: Elimination of solute banding in indium antimonide crystals by growth in a magnetic field, J. Appl. Phys. 37, 2021–2024 (1966)

    Article  ADS  Google Scholar 

  85. J. Kang, T. Fukuda: Growth exploration of compositionally uniform bulk semiconductors under a high magnetic field of 80 000 Gauss, Mater. Sci. Eng. B 75, 149–152 (2000)

    Article  Google Scholar 

  86. A.G. Ostrogorsky: Numerical simulation of single crystal growth by submerged heater method, J. Cryst. Growth 104, 233–238 (1990)

    Article  ADS  Google Scholar 

  87. A.G. Ostrogorsky, G. Müller: Normal and zone solidification using the submerged heater method, J. Cryst. Growth 137, 64–71 (1994)

    Article  ADS  Google Scholar 

  88. A.F. Witt, H.C. Gatos, M. Lichtensteiger, M.C. Lavine, C.J. Herman: Crystal growth and steady-state segregation under zero gravity: InSb, J. Electrochem. Soc. 122, 276 (1975)

    Article  ADS  Google Scholar 

  89. J.F. Yee, M.-C. Lin, K. Sarma, W.R. Wilcox: The influence of gravity on crystal defect formation in InSb-GaSb alloys, J. Cryst. Growth 30, 185–192 (1975)

    Article  ADS  Google Scholar 

  90. K. Okitsu, Y. Hayakawa, T. Yamaguchi, A. Hirata, S. Fujiwara, Y. Okano, N. Imaishi, S. Yoda, T. Oida, M. Kumagawa: Melt mixing of the In/GaSb/Sb solid combination by diffusion under microgravity, Jpn. J. Appl. Phys. 36, 3613–3619 (1997)

    Article  ADS  Google Scholar 

  91. Y. Hayakawa, K. Balakrishnan, H. Komatsu, N. Murakami, T. Nakamura, T. Koyama, T. Ozawa, Y. Okano, M. Miyazawa, S. Dost, L.H. Dao, M. Kumagawa: Drop experiments on crystallization of InGaSb semiconductor, J. Cryst. Growth 237–239, 1831–1834 (2002)

    Article  Google Scholar 

  92. A. Eyer, H. Leister, R. Nitsche: Floating zone growth of silicon under microgravity in a sounding rocket, J. Cryst. Growth 71, 173–182 (1985)

    Article  ADS  Google Scholar 

  93. C.H. Su, Y.G. Sha, S.L. Lehoczky, F.R. Szofran, C.C. Gillies, R.N. Scripa, S.D. Cobb, J.C. Wang: Crystal growth of HgZnTe alloy by directional solidification in low gravity environment, J. Cryst. Growth 234, 487–497 (2002)

    Article  ADS  Google Scholar 

  94. K. Hashio, M. Tatsumi, H. Kato, K. Kinoshita: Directional solidification of In_xGa_1-xAs, J. Cryst. Growth 210, 471–477 (2000)

    Article  ADS  Google Scholar 

  95. W.W. Mullins, R.F. Sekerka: Stability of a planar interface during solidification of a dilute binary alloy, J. Appl. Phys. 35, 444–451 (1964)

    Article  ADS  Google Scholar 

  96. G.B. McFadden, S.R. Coriell: Thermosolutal convection during directional solidification. II. Flow Transitions, Phys. Fluids 30(3), 659–671 (1987)

    Article  ADS  Google Scholar 

  97. D. Elwell, H.J. Scheel: Crystal Growth from High-Temperature Solutions (Academic, London 1975)

    Google Scholar 

  98. H.J. Kim: Bulk Crystal Growth Process for Compositionally Homogeneous GaInSb Substrates. Ph.D. Thesis (Rensselaer Polytechnic Institute, Troy, New York 2005)

    Google Scholar 

  99. K.J. Vogel: Solute Redistribution and Constitutional Supercooling Effects in Vertical Bridgman Grown InGaSb by Accelerated Crucible Rotation Technique. Ph.D. Thesis (Rensselaer Polytechnic Institute, Troy, New York 2004)

    Google Scholar 

  100. Y. Nishijima, K. Nakajima, K. Otsubo, H. Ishikawa: InGaAs single crystal using a GaAs seed grown with the vertical gradient freeze technique, J. Cryst. Growth 197, 769–776 (1999)

    Article  ADS  Google Scholar 

  101. D. Reid, B. Lent, T. Bryskiewicz, P. Singer, E. Mortimer, W.A. Bonner: Cellular structure in LEC ternary Ga_1-xIn_xAs crystals, J. Cryst. Growth 174, 250–255 (1997)

    Article  ADS  Google Scholar 

  102. W.A. Bonner, R.E. Nahory, H.L. Glichrist, E. Berry: Semi-insulating single crystal GaInAs: LEC growth and Characterization, Semi-Insulating III–V Materials (1990) pp. 199–204

    Google Scholar 

  103. K. Nakajima, T. Kusunoki, K. Otsubo: Bridgman growth of compositionally graded In_xGa_1-xAs (x = 0.05 − 0.30) single crystals for use as seeds for In_0.25Ga_0.75As crystal growth, J. Cryst. Growth 173, 42–50 (1997)

    Article  ADS  Google Scholar 

  104. Y. Nishijima, K. Nakajima, K. Otsubo, H. Ishikawa: InGaAs single crystal with a uniform composition in the growth direction grown on an InGaAs seed using the multicomponent zone growth method, J. Cryst. Growth 208, 171–178 (2000)

    Article  ADS  Google Scholar 

  105. T. Suzuki, K. Nakajima, T. Kusunoki, T. Katoh: Multicomponent zone melting growth of ternary InGaAs bulk crystal, J. Electron. Mater. 25(3), 357–361 (1996)

    Article  ADS  Google Scholar 

  106. A. Watanabe, A. Tanaka, T. Sukegawa: Pulling technique of a homogeneous GaInSb alloy under solute-feeding conditions, Jpn. J. Appl. Phys. 32, L793–L795 (1993)

    Article  ADS  Google Scholar 

  107. H.-J. Sell: Growth of GaInAs bulk mixed crystals as a substrate with a tailored lattice parameter, J. Cryst. Growth 107, 396–402 (1991)

    Article  ADS  Google Scholar 

  108. W.F. Leverton: Floating crucible technique for growing uniformly doped crystals, J. Appl. Phys. 29, 1241–1244 (1958)

    Article  ADS  Google Scholar 

  109. T. Kusunoki, K. Nakajima, K. Kuramata: Constant Temperature LEC growth of uniform composition InGaAs bulk crystals through continuous supply of GaAs, Inst. Phys. Conf. Ser. 129, 37–42 (1992)

    Google Scholar 

  110. K. Nakajima, T. Kusunoki: Constant temperature growth of uniform composition InGaAs bulk crystals by supplying GaAs, Inst. Phys. Conf. Ser. 120, 67–71 (1991)

    Google Scholar 

  111. T. Kusunoki, C. Takenaka, K. Nakajima: Growth of ternary In_0.14Ga_0.86As bulk crystal with uniform composition at constant temperature through GaAs supply, J. Cryst. Growth 115, 723–727 (1991)

    Article  ADS  Google Scholar 

  112. T. Ashley, J.A. Beswick, B. Cockayne, C.T. Elliott: The growth of ternary substrates of indium gallium antimonide by the double crucible Czochralski technique, Inst. Phys. Conf. Ser. 144, 209–213 (1995)

    Google Scholar 

  113. A. Tanaka, A. Watanabe, M. Kimura, T. Sukegawa: The solute-feeding Czochralski method for homogeneous GaInSb bulk alloy pulling, J. Cryst. Growth 135, 269–272 (1994)

    Article  ADS  Google Scholar 

  114. A. Tanaka, T. Yoneyama, M. Kimura, T. Sukegawa: Control of GaInSb alloy composition grown from ternary solution, J. Cryst. Growth 186, 305–308 (1998)

    Article  ADS  Google Scholar 

  115. M.H. Lin, S. Kou: Czochralski pulling of InSb single crystals from a molten zone on a solid feed, J. Cryst. Growth 193, 443–445 (1998)

    Article  ADS  Google Scholar 

  116. M.H. Lin, S. Kou: Dopant segregation control in Czochralski crystal growth with a wetted float, J. Cryst. Growth 132, 461–466 (1993)

    Article  ADS  Google Scholar 

  117. T. Ozawa, Y. Hayakawa, M. Kumagawa: Growth of III–V ternary and quaternary mixed crystals by the rotationary Bridgman method, J. Cryst. Growth 109, 212–217 (1991), see also [10.134]

    Article  ADS  Google Scholar 

  118. K. Kinoshita, H. Kato, S. Matsumoto, S. Yoda: Growth of homogeneous In_1-xGa_xSb crystals by the graded solute concentration method, J. Cryst. Growth 216, 37–43 (2000)

    Article  ADS  Google Scholar 

  119. K. Kinoshita, H. Kato, M. Iwai, T. Tsuru, M. Muramatsu, S. Yoda: Homogeneous In_0.3Ga_0.7As crystal growth by the traveling liquidus-zone method, J. Cryst. Growth 225, 59–66 (2001)

    Article  ADS  Google Scholar 

  120. A. Chandola: Bulk Crystal Growth and Infrared Absorption Studies of GaInSb. Ph.D. Thesis (Rensselaer Polytechnic Institute, Troy, New York 2005)

    Google Scholar 

  121. H. Kim, A. Chandola, R. Bhat, P.S. Dutta: Forced convection induced thermal fluctuations at the solid–liquid interface and its effect on the radial alloy distribution in vertical Bridgman grown Ga_1-xIn_xSb bulk crystals, J. Cryst. Growth 289, 450–457 (2006)

    Article  ADS  Google Scholar 

  122. J.C. Brice: The Growth of Crystals from Liquids (North-Holland, Amsterdam 1973)

    Google Scholar 

  123. P.S. Dutta, K.S. Sangunni, H.L. Bhat, V. Kumar: Growth of gallium antimonide by vertical Bridgman technique with planar crystal-melt interface, J. Cryst. Growth 141, 44–50 (1994)

    Article  ADS  Google Scholar 

  124. C.E. Chang, W.R. Wilcox: Control of interface shape in the vertical Bridgman–Stockbarger technique, J. Cryst. Growth 21, 135–140 (1974)

    Article  ADS  Google Scholar 

  125. A. Yeckel, J.J. Derby: Computer modeling of bulk crystal growth. In: Bulk Crystal Growth of Electronic, Optical and Optoelectronic Materials, ed. by P. Capper (Wiley, England 2005), Chap. 3

    Google Scholar 

  126. A. Yeckel, J.J. Derby: Computational simulations of the growth of crystals from liquids. In: Crystal Growth Technology, ed. by H.J. Scheel, T. Fukuda (Wiley, England 2003), Chap. 6

    Google Scholar 

  127. V.I. Polezhaev: Modeling of technologically important hydrodynamics and heat/mass transfer processes during crystal growth. In: Crystal Growth Technology, ed. by H.J. Scheel, T. Fukuda (Wiley, England 2003), Chap. 8

    Google Scholar 

  128. C.L. Jones, P. Capper, J.J.G. Gosney: Thermal modeling of Bridgman crystal growth, J. Cryst. Growth 56, 581–590 (1982)

    Article  ADS  Google Scholar 

  129. H.P. Greenspan: The Theory of Rotating Fluids (Cambridge Univ. Press, London 1968)

    MATH  Google Scholar 

  130. H.J. Scheel, R.H. Swendsen: Evaluation of experimental parameters for growth of homogeneous solid solutions, J. Cryst. Growth 233, 609–617 (2001)

    Article  ADS  Google Scholar 

  131. H.J. Scheel, E.O. Schulz-Dubois: Flux growth of large crystals by accelerated crucible-rotation technique, J. Cryst. Growth 8, 304–306 (1971)

    Article  ADS  Google Scholar 

  132. H.J. Scheel: Accelerated crucible rotation: A novel stirring technique in high-temperature solution growth, J. Cryst. Growth 13/14, 560–565 (1972)

    Article  ADS  Google Scholar 

  133. J.B. Mullin: The Role of Magnetic Fields in Crystal Growth, Special Issue of Prog. Cryst. Growth Charact. Mater. 38, 1–6 (1999), see whole issue

    Article  Google Scholar 

  134. T. Ozawa, Y. Hayakawa, K. Balakrishna, F. Ohonishi, T. Koyama, M. Kumagawa: Growth of In_xGa_1-xAs bulk mixed crystals with a uniform composition by the rational Bridgman method, J. Cryst. Growth 229, 124–129 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha S. Dutta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Dutta, P.S. (2010). Bulk Crystal Growth of Ternary III–V Semiconductors. In: Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M. (eds) Springer Handbook of Crystal Growth. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74761-1_10

Download citation

Publish with us

Policies and ethics