Skip to main content

Part of the book series: Advances in Geographic Information Science ((AGIS))

  • 4347 Accesses

Abstract

This chapter focuses on the most often used conventional optimization approaches in GIS-MCDA. The methods can be classified into three groups: (i) methods for generating non-dominated solutions (the weighting, and constraint methods), (ii) the distance-based methods (such as compromise programming, goal programming, and reference point methods), and (iii) interactive methods. This classification is based on the ways in which the decision maker’s preference information is incorporated into the modeling procedure. Efficient solution generation methods do not require the preference information to be provided before performing the optimization procedure. In distance-based methods, the preferences are specified a priori; that is, all decision maker preferences are specified before the solution process. The interactive methods assume that the preferences can be provided progressively in the modeling procedure.  

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrell, P. J., Stam, A., & Fischer, G. W. (2004). Interactive multiobjective agro-ecological land use planning: The Bungoma region in Kenya. European Journal of Operational Research, 158(1), 194–217.

    Article  Google Scholar 

  • Alçada-Almeida, L., Tralhão, L., Santos, L., & Coutinho-Rodrigues, J. (2009). A multiobjective approach to locate emergency shelters and identify evacuation routes in urban areas. Geographical Analysis, 41(1), 9–29.

    Article  Google Scholar 

  • Antoine, J., Fischer, G., & Makowski, M. (1997). Multiple criteria land use analysis. Applied Mathematics and Computation, 83(2–3), 195–215.

    Article  Google Scholar 

  • Chang, N. B., Lu, H. Y., & Wie, Y. L. (1997). GIS technology for vehicle routing and scheduling in solid waste collection systems. Journal of Environmental Engineering, 123(9), 901–910.

    Article  Google Scholar 

  • Charnes, A., & Cooper, W. W. (1961). Management models and industrial applications of linear programming. New York: Wiley.

    Google Scholar 

  • Church, R. L., Loban, S. R., & Lombard, K. (1992). An interface for exploring spatial alternatives for a corridor location problem. Computers and Geosciences, 18(8), 1095–1105.

    Article  Google Scholar 

  • Cisneros, J. M., Grau, J. B., Antón, J. M., de Prada, J. D., Cantero, A., & Degioanni, A. J. (2011). Assessing multi-criteria approaches with environmental, economic and social attributes, weights and procedures: A case study in the Pampas, Argentina. Agricultural Water Management, 98(10), 1545–1556.

    Article  Google Scholar 

  • Cohon, J. L. (1978). Multiobjective programming and planning. London: Academic Press.

    Google Scholar 

  • Coutinho-Rodrigues, J., Clímaco, J., Current, J., & Ratick, S. (1997). An interactive spatial decision support system for multiobjective HAZMAT location-routing problems. Transportation Research Record, 1602(1), 101–109.

    Article  Google Scholar 

  • Coutinho-Rodrigues, J., Tralhão, L., & Alçada-Almeida, L. (2012). Solving a location-routing problem with a multiobjective approach: The design of urban evacuation plans. Journal of Transport Geography, 22(1), 206–218.

    Article  Google Scholar 

  • Diamond, J. T., & Wright, J. R. (1988). Design of an integrated spatial information system for multiobjective land-use planning. Environment and Planning B, 15(2), 205–214.

    Article  Google Scholar 

  • Farhan, B., & Murray, A. T. (2008). Siting park-and-ride facilities using a multi-objective spatial optimization model. Computers and Operations Research, 35(2), 445–456.

    Article  Google Scholar 

  • Ghosh, D. (2008). A loose coupling technique for integrating GIS and multi-criteria decision making. Transactions in GIS, 12(3), 365–375.

    Article  Google Scholar 

  • Goicoechea, A., Hansen, D. R., & Duckstein, L. (1982). Multiobjective decision analysis with engineering and business applications. New York: Wiley.

    Google Scholar 

  • Herzig, A. (2008). A GIS-based module for the multiobjective optimization of areal resource allocation. In L. Bernard, A. Friis-Christensen, H. Pundt & I. Compte (Eds.), Proceedings of the 11th AGILE International Conference On Geographic Information Science (pp. 1–17), Spain: University of Girona.

    Google Scholar 

  • Huang, B., Fery, P., Xue, L., & Wang, Y. (2008). Seeking the Pareto front for multiobjective spatial optimization problems. International Journal of Geographical Information Science, 22(5), 507–526.

    Article  Google Scholar 

  • Hwang, C. L., & Masud, A. S. M. (1979). Multiple Objective decision making methods and applications: A state-of-the-art survey. Berlin: Springer.

    Book  Google Scholar 

  • Jones, D., & Tamiz, M. (2010). Practical goal programming. Berlin: Springer.

    Book  Google Scholar 

  • Kao, J. J., & Lin, H. Y. (1996). Multifactor spatial analysis for landfill siting. Journal of Environmental Engineering, 122(10), 902–908.

    Article  Google Scholar 

  • Karni, E., & Werczberger, E. (1995). The compromise criterion in MCDM: Interpretation and sensitivity to the p parameter. Environment and Planning B, 22(3), 407–418.

    Google Scholar 

  • Killen, J. (1983). Mathematical programming methods for geographers and planners. London: Croom Helm.

    Google Scholar 

  • Korhonen, P., & Wallenius, J. (2010). Interactive multiple objective programming methods. In C. Zopounidis & P. M. Pardalos (Eds.), Handbook of multicriteria analysis (pp. 263–286). Berlin: Springer.

    Chapter  Google Scholar 

  • Li, R., & Leung, Y. (2011). Multi-objective route planning for dangerous goods using compromise programming. Journal of Geographical Systems, 13(3), 249–271.

    Article  Google Scholar 

  • Ligmann-Zielinska, A., & Jankowski, P. (2010). Exploring normative scenarios of land use development decisions with an agent-based simulation laboratory. Computers, Environment and Urban Systems, 34(5), 409–423.

    Article  Google Scholar 

  • Malczewski, J. (1999). GIS and multicriteria decision analysis. New York: Wiley.

    Google Scholar 

  • Malczewski, J. (2006). GIS-based multicriteria decision analysis: A survey of the literature. International Journal of Geographical Information Science, 20(7), 703–726.

    Article  Google Scholar 

  • Malczewski, J., & Ogryczak, W. (1990). An interactive approach to the central facility location problem. Geographical Analysis, 22(3), 244–258.

    Article  Google Scholar 

  • Malczewski, J., & Ogryczak, W. (1995). The multiple criteria location problem—Part 1: A generalized network model and the set of efficient solutions. Environment and Planning A, 27(12), 1931–1960.

    Article  Google Scholar 

  • Malczewski, J., & Ogryczak, W. (1996). The multiple criteria location problem—Part 2: Preference-based methods and interactive decision support. Environment and Planning A, 28(1), 69–98.

    Article  Google Scholar 

  • Maliszewski, P. J., Kuby, M. J., & Horner, M. W. (2012). A comparison of multi-objective spatial dispersion models for managing critical assets in urban areas. Computers, Environment and Urban Systems, 36(4), 331–341.

    Article  Google Scholar 

  • Maliszewski, P. J., & Horner, M. W. (2010). A spatial modeling framework for siting critical supply infrastructures. Professional Geographer, 62(3), 426–441.

    Article  Google Scholar 

  • Maniezzo, V., Mendes, I., & Paruccini, M. (1998). Decision support for siting problems. Decision Support Systems, 23(3), 273–284.

    Article  Google Scholar 

  • Meyer, B. C., Lescot, J. M., & Laplana, R. (2009). Comparison of two spatial optimization techniques: A framework to solve multiobjective land use distribution problems. Environmental Management, 43(2), 264–281.

    Article  Google Scholar 

  • Nijkamp, P. (1979). Multidimensional spatial data and decision analysis. Chichester: Wiley.

    Google Scholar 

  • November, S. M., Cromley, R. G., & Cromley, E. K. (1996). Multi-objective analysis of school district regionalization alternatives in Connecticut. Professional Geographer, 48(1), 1–14.

    Article  Google Scholar 

  • Roettera, R. P., Hoanh, C. T., Laborteb, A. G., van Keulen, H., Van Ittersum, M. K., Dreiser, C., et al. (2005). Integration of systems network (SysNet) tools for regional land use scenario analysis in Asia. Environmental Modelling and Software, 20(3), 291–307.

    Article  Google Scholar 

  • Romero, C., Tamiz, M., & Jones, D. F. (1998). Goal programming, compromise programming and reference point method formulations: Linkages and utility interpretations. Journal of the Operational Research Society, 49(9), 986–991.

    Article  Google Scholar 

  • Rozakis, S., Soldatos, P. G., Kallivroussis, L., & Nicolaou, I. (2001). Multiple criteria analysis of bio-energy projects: Evaluation of bio-electricity production in Farsala Plain, Greece. Journal of Geographic Information and Decision Analysis, 5(1), 49–64.

    Google Scholar 

  • Santé, I., & Crecente, R. (2007). LUSE, a decision support system for exploration of rural land use allocation: Application to the goal programming Terra Chá district of Galicia (N.W. Spain). Agricultural Systems, 94(2), 341–356.

    Article  Google Scholar 

  • Shih, L. H., & Lin, Y. T. (2003). Multicriteria optimization for infectious medical waste collection system planning. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 7(2), 78–85.

    Article  Google Scholar 

  • Steuer, R. E. (1986). Multiple Criteria Optimization: Theory, Computation and Application. New York: Wiley.

    Google Scholar 

  • Thomas, R. H., & Huggett, R. J. (1980). Modelling in geography: A mathematical approach. London: Harper and Row.

    Google Scholar 

  • Wierzbicki, A. P. (1982). A mathematical basis for satisficing decision making. Mathematical Modelling, 3(3), 391–405.

    Article  Google Scholar 

  • Wierzbicki, A. P. (1983). A critical essay on the methodology of multiobjective analysis. Regional Science and Urban Economics, 13(1), 5–29.

    Article  Google Scholar 

  • Wu, C., & Murray, A. T. (2005). Optimizing public transit quality and system access: The multiple-route, maximal covering/shortest-path problem. Environment and Planning B: Planning and Design, 32(2), 163–178.

    Article  Google Scholar 

  • Zarghami, M., & Szidarovszky, F. (2011). Multicriteria analysis applications to water and environment management. Berlin: Springer.

    Google Scholar 

  • Zeleny, M. (1982). Multiple criteria decision making. New York: McGraw Hill.

    Google Scholar 

  • Zeng, H., Pukkala, T., Peltola, H., & Kellomäki, S. (2007). Application of ant colony optimizationfor the risk management of wind damage in forest planning. Silva Fennica, 41(2), 315–332.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Malczewski .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Malczewski, J., Rinner, C. (2015). Multiobjective Optimization Methods. In: Multicriteria Decision Analysis in Geographic Information Science. Advances in Geographic Information Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74757-4_5

Download citation

Publish with us

Policies and ethics