Skip to main content

Marine Gravity and Geoid from Satellite Altimetry

  • Chapter
  • First Online:
Geoid Determination

Part of the book series: Lecture Notes in Earth System Sciences ((LNESS,volume 110))

Abstract

Two thirds of the globe is covered with water, and large parts of the ocean are not covered with marine gravity observations. In large parts of the Southern Pacific Ocean the distance between surveys lines are several hundred kilometres thus only resolving signals of twice that distance. Satellite altimetry can provide information of the height of the oceans over nearly 60% of the Earth surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen OB (1995) Global Ocean tides from ERS-1 and TOPEX/POSEIDON altimetry, J Geophys Res 100(C12):25,249–25,260

    Google Scholar 

  • Andersen OB (1999) Shallow water tides on the northwest European shelf from TOPEX/POSEIDON altimetry. J Geophys Res 104:7729–7741

    Article  Google Scholar 

  • Andersen OB, Hinderer J (2005) Global inter-annual gravity changes from GRACE: early results. Geophys Res Lett 32(1):L01402. doi:10.1029/2004GL020948

    Article  Google Scholar 

  • Andersen OB, Knudsen P (2000) The role of satellite altimetry in gravity field modelling in coastal areas. Phys Chem Earth A 25(1):17–24

    Article  Google Scholar 

  • Andersen OB, Knudsen P (1998) Global marine gravity field from the ERS-1 and GEOSAT geodetic mission altimetry. J Geophys Res 103(C4):8129–8137

    Article  Google Scholar 

  • Andersen OB, Knudsen P (2009) The DNSC08 mean sea surface and mean dynamic topography. J Geophys Res 114(C11). doi:10.1029/2008JC005179

    Article  Google Scholar 

  • Andersen OB, Scharroo R (2011) Range and geophysical corrections in coastal regions. In: Vignudelli S et al (eds) Coastal altimetry, Springer, Berlin/Heidelberg. ISBN: 978-3-642-12795-3

    Google Scholar 

  • Andersen OB, Egbert G, Erofeeva L, Ray R (2006) Mapping Non linear shallow water tides, a look at the past and future, Ocean Dyn: 1–17. Springer, doi:10.1007/s10236-006-0060-7

    Google Scholar 

  • Andersen OB, Knudsen P, Berry P, Kenyon S, Factor JK (2010a) Recent development in high resolution global altimetric gravity field modeling. Lead Edge 29(5):540–545. ISSN: 1070-485X

    Google Scholar 

  • Andersen OB, Knudsen P, Berry PAM (2010b) The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J Geod 84(3):191–199. doi:10.1007/s00190-009-0355-9

    Article  Google Scholar 

  • Balmino G, Moynot, B, Sarrailh M, Valès N (1987) Free air gravity anomalies over the oceans from Seasat and Geos 3 altimeter data. Eos Trans AGU 68(2):17–18

    Article  Google Scholar 

  • Berry PAM, Garlick, JD, Freeman JA, Mathers EL (2005) Global inland water monitoring from multi-mission altimetry. Geophys Res Lett 32(16):L16401. doi:10.1029/2005GL022814

    Article  Google Scholar 

  • Bosch W (2008) EOT08a model performances near coasts. In: Second coastal altimetry workshop, Pisa, Italy.http://www.coastalt.eu/pisaworkshop08

  • Bracewell RN (1986a) The Fourier transform and its applications, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Brown GS (1977). The average impulse response of a rough surface and its applications. IEEE Trans Antennas Propag 25(1):67–74

    Article  Google Scholar 

  • Challenor PG, Srokosz MA (1989) The extraction of geophysical parameters from radar altimeter return from a nonlinear ocean surface. In: Brooks SR (ed) Mathematics in remote sensing. Institute of Mathematics and Its Applications, Clarendon Press, Oxford, pp 257–268

    Google Scholar 

  • Chelton DB, Schlax MG (1994) The resolution capability of an irregularly sampled dataset: with application to geosat altimeter data. J Atmos Oceanic Tech 11:534–550

    Article  Google Scholar 

  • Childers V, McAdoo D, Brozena J, Laxon S (2001) New gravity data in the Arctic Ocean: comparison of airborne and ERS gravity. J Geophys Res 106:8871–8886

    Article  Google Scholar 

  • Deng X, Featherstone W, Hwang C, Berry PAM (2003) Waveform retracking of ERS-1. Mar Geod 25(4):189–204

    Google Scholar 

  • Dowson M, Berry PAM (2006) Global analysis of multi-mission echoes over the earth’s land surface from 15 years of altimeter missions. In: Proceedings of the Symposium of 15 years of progress in radar altimetry, ESA SP-614, ESA Publications Division, European Space Agency, Noordwijk, The Netherlands

    Google Scholar 

  • Eymard L, Obligis E (2006) The altimetric wet troposphere correction: progress since the ERS-1 mission. In: Danesy D (ed) 15 years of progress in satellite altimetry, Venice, Italy, ESA SP-614. ISBN: 92-9092-925-1

    Google Scholar 

  • Fairhead JD, Green CM, Fletcher KMU (2004) Global mapping deep-water hydrocarbon plays of the continental margins. ASEG 17th geophysical conference and exhibition, Sydney. doi:10.1071/ASEG2004ab041

    Google Scholar 

  • Forsberg R, Sideris MG (1993) Geoid computations by the multi-banding spherical FFT approach. Man Geod 18:82–90

    Google Scholar 

  • Forsberg R, Solheim D (1988) Performance of FFT methods in local gravity field modeling. In: Proceedings of the Chapman conference on progress in the determination of the Earth’s gravity field, Fort-Lauderdale, 13–16 Sept 1988, pp l00–103

    Google Scholar 

  • Forsberg R, Tscherning CC (1997) Topographic effects in gravity field modelling for BVP. In: Sansò F, Rummel R (eds) Geodetic boundary value problems in view of the one centimetre geoid. Lecture notes in Earth sciences, vol 65. Springer, Berlin/Heidelberg/New York, pp 241–272

    Google Scholar 

  • Forsberg R, Tscherning CC (2008) An overview manual for the GRAVSOFT geodetic gravity field modelling programs, 2nd edn. Contract Report to JUPEM, Aug 2008

    Google Scholar 

  • Fu LL, Cazenave A (2001) Satellite altimetry and earth sciences, Academic Press, New York, P 486

    Google Scholar 

  • Haagmans R, de Min E, Van Gelderen M (1993) Fast evaluation of convolution integrals on the sphere using 1D FFT, and a comparison with existing methods for Stokes’ integral. Man Geod 18:227–241

    Google Scholar 

  • Haxby WF (1983) Gravity field of the worlds oceans (Seasat altimetry), map. National Geophysical Data Center, Boulder

    Google Scholar 

  • Hernandez F, Schaeffer P (2000) Altimetric mean sea surfaces and gravity anomaly maps and intercomparison. AVISO Tech Rep, AVI-NT-011-5242, CLS CNES, Toulouse

    Google Scholar 

  • Hwang C (1998) Inverse Vening Meinesz formula and deflection-geoid formula: applications to the predictions of gravity and geoid over the South China Sea. J Geod 72:304–312

    Article  Google Scholar 

  • Hwang C, Hsu H (2003) Marine gravity anomaly from satellite altimetry; a comparison of methods over shallow waters. In: Proceedings: international workshop on satellite altimetry for geodesy, geophysics and oceanography. IAG symposium vol 126, Springer, Berlin/Heidelberg, pp 59–66

    Google Scholar 

  • Hwang C, Parsons B (1995) Gravity anomalies derived from seasat, geosat, ERS-1 and TOPEX/POSEIDON altimetry and ship gravity: a case study over the Reykjanes Ridge. Geophys J Int 122:551–568

    Article  Google Scholar 

  • Hwang C, Hsu H, Jang R (2002) Global mean sea surface and marine gravity anomaly from multi-satellite altimetry: applications of deflection-geoid and inverse Vening Meinesz formulae. J Geod 76(8):407–418

    Article  Google Scholar 

  • Hwang C, Wang C-G, Hsiao Y-S (2003) Terrain correction computation using Gaussian quadrature. Comput Geosci 29:1259–1268

    Article  Google Scholar 

  • Kaula WM (1966) Tests and combination of satellite determinations of the gravity field with gravimetry. J Geophys Res 71:5303–5314

    Article  Google Scholar 

  • Kenyon SC, Forsberg R (2008) New gravity field for the Arctic. EOS 89:32, 289

    Article  Google Scholar 

  • Kim J-H (1996) Improved recovery of gravity anomalies from dense altimeter data. Rep No 444, Department of Geodetic Sciences and Surveying, The Ohio State University, Columbus, 130pp

    Google Scholar 

  • Knudsen P (1987a) Estimation and modelling of the local empirical covariance function using gravity and satellite altimeter data. Bull Geod 61:145–160

    Article  Google Scholar 

  • Knudsen P (1991) Simultaneous estimation of the gravity field and sea surface topography from satellite altimeter data by least squares collocation. Geophys J Int 104:307–317

    Article  Google Scholar 

  • Knudsen P (1993) Geodesy and geophysics. In: KakkuriJ (ed) lecture notes for NKG autumn school. Korpilampi, Finland, pp 87–126

    Google Scholar 

  • Knudsen P, Brovelli M (1991) Collinear and cross-over adjustment of geosat ERM and seasat altimeter data in the Mediterranean Sea. Surv Geophys, 14(4):449–459, 1993

    Article  Google Scholar 

  • Knudsen P, Andersen OB, Tscherning CC (1992) Altimetric gravity anomalies in the Norwegian-Greenland Sea - preliminary results from the ERS-1 35 days repeat mission. Geophys Res Lett 19(17):1795–1798

    Article  Google Scholar 

  • Laxon S, McAdoo D (1998) Satellites provide new insights into polar geophysics, EOS. Trans AGU 79(6):69–72

    Google Scholar 

  • Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA/TP-1998-206861. Goddard Space Flight Center, Greenbelt

    Google Scholar 

  • Lillibridge JL, Smith WHF, Scharrroo R, Sandwell DT (2004) The geosat geodetic mission 20th anniversary data product. AGU, 85(47). Fall Meet Suppl, Abstract SF43A–0786.

    Google Scholar 

  • Maus S, Green CM, Fairhead D (1998) Improved ocean-geoid resolution from retracked ERS-1 satellite altimeter waveforms. Geophys J Int 134(1):243–253

    Article  Google Scholar 

  • Mazzega P, Houry S (1986) An experiment to invert Seasat altimetry for the Mediterranean and Black Sea mean surface. Geophys J 96:259–272. Rosborough GW (1989) Satellite orbit perturbations due to the geopotential. Rep No CSR-86-1, Center for Space Research, The University of Texas, Austin

    Google Scholar 

  • Moritz H (1980) Advanced physical geodesy, 2nd edn. Wichmann, Karlsruhe

    Google Scholar 

  • Nash RA, Jordan SK (1987) Statistical geodesy – an engineering perspective. Proc IEEE 66:532–550

    Article  Google Scholar 

  • Olesen AV (2003) Improved airborne scalar gravimetry for regional gravity field mapping and geoid determination. Tech Rep 24, National Survey and Cadastre, Copenhagen, 54pp. ISBN: 87-7866-383-0

    Google Scholar 

  • Olesen AV, Andersen OB, Tscherning CC (2002) Merging of airborne gravity and gravity derived from satellite altimetry: test cases along the coast of Greenland. Stud Geophys Geod 46:387–394

    Article  Google Scholar 

  • Olgiati A, Balmino G, Sarrailh M, Green, CM (1995) Gravity anomalies from satellite altimetry: comparison between computation via geoid heights and via deflections of the vertical. Bull Geod 69(4):252–260

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2007b) Earth gravitational model to degree 2160: status and progress. Paper presented at XXIV general assembly of the international union of geodesy and geophysics (IUGG), Perugia, pp 2–13

    Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon, SC, Factor JK (2008) Earth gravitational model to degree 2160 EGM2008. Paper presented to the European geosciences union general assembly, Vienna, Apr 2008

    Google Scholar 

  • Rapp RH (1993) Use of altimeter data in estimating global gravity models. In: satellite altimetry in geodesy and oceanography. Lecture notes in earth sciences, vol 50. Springer, Berlin.

    Google Scholar 

  • Rapp RH, Wang YM, Pavlis NK (1991) The Ohio State 1991 geopotential and sea surface topography harmonic coefficient models. Rep No 410, Department of Geodetic Sciences and Surveying, The Ohio State University, Columbus

    Google Scholar 

  • Raney, KR (2009) An overview of the future of coastal altimetry. In 3rd coastal altimetry workshop, ESRIN. ESA available from: http://www.congrex.nl/09c32/Talks-Files-PDF/05-Future-Coastal-Altimetry-3rd-CA-WS-Raney.pdf

    Google Scholar 

  • Ray RD (2001) Inversion of oceanic tidal currents from measured elevations. J Mar Syst 28:1–18

    Article  Google Scholar 

  • Ray RD (2006) Secular changes of the M2 tide in the Gulf of Maine. Cont Shelf Res 26:422–427

    Article  Google Scholar 

  • Rummel R, Haagmans RHN (1990) Gravity gradients from satellite altimetry. Mar Geod 14:1–12

    Article  Google Scholar 

  • Rummel R, Van Gelderen M, Koop R, Schrama E, Sansò F, Brovelli M, Migliaccio F, Sacerdote F (1993) Spherical harmonic analysis of satellite gradiometry. Publications on geodesy, new series, vol 39. Netherlands Geodetic Commission, Delft

    Google Scholar 

  • Sandwell DT (1992) Antarctic marine gravity field from high-density satellite altimetry. Geophys J Int 109:437–448

    Article  Google Scholar 

  • Sandwell DT, Smith WHF (1997) Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. J Geophys Res 102(B5):10039–10054

    Article  Google Scholar 

  • Sandwell DT, Smith WHF (2005) Retracking ERS-1 altimeter waveforms for optimal gravity field recovery. Geophys J Int 163:79–89. doi:10.1111/j.1365-246X.2005.02724

    Article  Google Scholar 

  • Sandwell DT, Smith WHF (2009) Global marine gravity from retracked Geosat and ERS-1 altimetry: ridge segmentation versus spreading rate. J Geophys Res 114:B01411. doi:10.1029/2008JB006008

    Article  Google Scholar 

  • Schrama EJO (1989) The role of orbit errors in processing of satellite altimeter data. Rep No 33, Netherlands Geodetic Commission, Publications on Geodesy, New series, Delft

    Google Scholar 

  • Schwarz K-P, Sideris MG, Forsberg R (1990) The use of FFT tecniques in physical geodesy. Geophys J Int 100:485–514

    Article  Google Scholar 

  • Shum CK, Woodworth PL, Andersen OB, Egbert G, Francis O, King C, Klosko S, Le Provost C, Li X, Molines JM, Parke M, Ray R, Schlax M, Stammer D, Tierney C, Vincent P, Wunch C (1997) Accuracy assessment of recent ocean tide models. J Geophys Res 102(C11):25173–25194

    Article  Google Scholar 

  • Strang van Hees G (1990) Stokes’ formula using fast Fourier techniques. Man Geod 15:235–239

    Google Scholar 

  • Tscherning CC, Rapp RH (1974) Closed covariance expressions for gravity anomalies, geoid undulations, and deflections of the vertical implied by anomaly degree variances. Rep No 208, Department of Geodetic Sciences and Surveying, The Ohio State University, Columbus

    Google Scholar 

  • Tscherning CC, Knudsen P, Ekholm S, Andersen OB (1993) An analysis of the gravity field in the Norwegian sea using ERS-1 altimeter measurements. In: Proceedings of the first ERS-1 symposium. European Space Agency Special Publication ESA SP-359, ESA Publications Division, European Space Agency, Noordwijk, The Netherlands, pp 413–418

    Google Scholar 

  • Wang YM (2001) GSFC00 mean sea surface, gravity anomaly, and vertical gravity gradient from satellite altimeter data. J Geoph Res 106(C12):31167–31174

    Article  Google Scholar 

  • Wunch C (1993) Physics of the ocean circulation. In: Geodesy and oceanography. Lecture notes in earth sciences, vol 50. Springer, Berlin

    Google Scholar 

  • Wunsch C, Zlotnicki V (1984) The accuracy of altimétric surfaces. Geophys J R Astron Soc 78:795–808. doi:10.1111/j.1365-246X.1984.tb05071.x

    Article  Google Scholar 

  • Yale MM, Sandwell DT, Smith WHF (1995) Comparison of along-track resolution of stacked Geosat, ERS 1 and TOPEX satellite altimeters. J Geophys Res 100(8):15117–15127

    Article  Google Scholar 

  • Yi Y (1995) Determination of gridded mean sea surface from TOPEX, ERS-1 and GEOSAT altimeter data. Rep No 434, Department of Geodetic Sciences and Surveying, The Ohio State University, Columbus

    Google Scholar 

  • Zhang B, Sideris MG (1996) Oceanic gravity by analytical inversion of Hotine’s formula. Mar Geod 19:115–136

    Article  Google Scholar 

  • Zlotnicki V (1984) On the accuracy of gravimetric geoids and the recovery of oceanographic signals from altimetry. Mar Geod 8:129–157

    Article  Google Scholar 

  • Zwally HJ, Schutz B, Abdalati W, Abshire J, Bentley C, Brenner A, Bufton J, Dezio J, Hancock D, Harding D, Herring T, Minster B, Quinn K, Palm S, Spinhirne J, Thomas R (2002) ICESat’s laser measurement of polar ice, atmosphere, ocean and land. J Geodyn 34(3–4):405–445

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole B. Andersen .

Editor information

Editors and Affiliations

Appendix A Data Resources

Appendix A Data Resources

1.1 A.1 Altimetry Data

Some of the major distributors of satellite altimetry are the following:

Radar Altimetry Database system (RADS)

http://rads.tudelft.nl

Archiving Validation, interpretation of satellite data (AVISO)

www.aviso.oceanobs.com/en/altimetry/index.html

National Ocean and Atmosphere Administration (NOAA)

http://ibis.grdl.noaa.gov/SAT/ocean_links.html

Jet Propulsion Lab (JPL-PODAAC)

http://podaac.jpl.nasa.gov/DATA_CATALOG/index.html

International Altimeter Service (IAS):

http://ias.dgfi.badw.de/IAS

1.2 A.2 Altimetric Gravity Field Resources

DTU Space (DNSC, DTU gravity field models)

http://space.dtu.dk (data and models)

University of California, San Diego (Sandwell and Smith gravity field models)

http://topex.ucsd.edu/marine_grav/mar_grav.html

NCTU National Chaotung University (Taiwan)

The NCTU1 global marine gravity field model is available on request from

Cheinway Hwang at hwang@geodesy.cv.nctu.edu.tw

Arctic Gravity Field Project (ArcGP)

Arctic gravity field grid

http://earth-info.nga.mil/GandG/wgs84/agp/readme_new.html

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Andersen, O.B. (2013). Marine Gravity and Geoid from Satellite Altimetry. In: Sansò, F., Sideris, M. (eds) Geoid Determination. Lecture Notes in Earth System Sciences, vol 110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74700-0_9

Download citation

Publish with us

Policies and ethics