Skip to main content

The Local Modelling of the Gravity Field by Collocation

  • Chapter
  • First Online:
Geoid Determination

Part of the book series: Lecture Notes in Earth System Sciences ((LNESS,volume 110))

Abstract

The chapter aims at solving the problem of estimating the residual anomalous potential T r from all available information, in particular in a certain area. Remember that here residual means that the long wavelength part as well as the short wavelength part of T have been at least reduced by means of the deterministic modelling described in Chaps. 3 and 4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this chapter we will use \({\mathcal{E}}^{2}\) for the mean quadratic prediction error; confusion should not be made with the same symbol \(\mathcal{E}\) used elsewhere to denote the ellipsoid.

  2. 2.

    Often in group theory the inverse rotation matrix R ω t is used; since this is irrelevant in the present text and this is not useful, we stick to definition (5.30).

References

  • Bjerhammar A (1987) Discrete physical geodesy. Reports of the department of geodesy science and survey, vol 38. Ohio State University, Columbus

    Google Scholar 

  • Forsberg R (1987) A new covariance model for intertial gravimetry and gradiometry. J Geophys Res 92(NB2):1305–1310

    Google Scholar 

  • Jekeli C (1991) The statistics of the Earth’s gravity field, revisited. Man Geod 16:313–325

    Google Scholar 

  • Koch KR (1987) Parameter estimation and hypothesis testing in linear models. Springer, Berlin

    Google Scholar 

  • Krarup T (2006) In: Borre K (ed) Mathematical foundations of geodesy. Springer, Berlin

    Google Scholar 

  • Lauritzen S (1973) The probabilistic background of some statistical methods in physical geodesy. Meddelelse (geodætisk institut (Denmark)), vol 48. Geodætisk Institut, København

    Google Scholar 

  • Moritz H (1980) Advanced physical geodesy, 2nd edn. Wichmann, Karlsruhe

    Google Scholar 

  • Pail R, Sansò F, Reguzzoni M, Kütreiber N (2010) On the combination of global and local data in collocation theory. Studia Geoph Geod 54(2):195–218

    Article  Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon, SC, Factor JK (2008) Earth gravitational model to degree 2160 EGM2008. Paper presented to the European geosciences union general assembly, Vienna, Apr 2008

    Google Scholar 

  • Rapp RH (1997a) Global models for the one-centimeter geoid, present status and near term perspectives. In: Geodetic boundary value problems in view of the one-centimeter geoid. Lecture notes in Earth science, vol 65. Springer, Berlin

    Google Scholar 

  • Rozanov I (1982) Markov random fields. Springer, Berlin

    Book  Google Scholar 

  • Rummel R, Schwarz K-P (1977) On the non-homogeneity of the global coavariance function. Bull Geod 51(2):93–103

    Article  Google Scholar 

  • Sacerdote F, Sansò F (1991) Holes in boundary and out of boundary data. In: Determination of the geoid, present and future, IAG Symposia, vol 106. Springer, Berlin

    Google Scholar 

  • Sansò F (1986) Statistical methods in physical geodesy. In: Matematical and numerical techniques in physcial geodesy. Lecture notes in Earth sciences, vol 7. Springer, Berlin

    Google Scholar 

  • Sansò F, Venuti G (2002a) The estimation theory for random fields in the Bayesian context: a contribution from geodesy. In: Proceedings of 5th Hotine-Marussi symposium on mathematical geodesy. IAG Series, vol 127. Springer, Berlin/Heidelberg

    Google Scholar 

  • Sansò F, Tscherning CC, Venuti G (2000) A theorem of insensitivity of the collocation solution to variations of the metric of the interpolation space. In: Geodesy beyond Year 2000. Proceedings of the 35th IAG general assembly. IAG Series, vol 121. Springer, Berlin/Heidelberg

    Google Scholar 

  • Tscherning CC, Rapp RH (1974) Closed covariance expressions for gravity anomalies, geoid undulations, and deflections of the vertical implied by anomaly degree variances. Rep No 208, Department of Geodetic Sciences and Surveying, The Ohio State University, Columbus

    Google Scholar 

  • Vapnik V (1982) Estimation of dependencies base on empirical data. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 A.1

We want to prove the relation (5.98), sending the interested reader to the literature Moritz (1980) and Sansò (1986) for the distribution of the vector T(ω).

We have

$$\begin{array}{rcl} \sum\limits_{m=-n}^{n}{T}_{ nm}^{2}(\omega )& =& \frac{1} {{(4\pi )}^{2}} \int d{\sigma }_{P}T({R}_{\omega }P)\int d{\sigma }_{Q}T({R}_{\omega }Q) \\ & & \cdot \sum\limits_{m=-n}^{n}{Y }_{ nm}({{\vartheta}}_{P},{\lambda }_{P}){Y }_{nm}({{\vartheta}}_{Q},{\lambda }_{Q}) \\ & =& \frac{2n + 1} {{(4\pi )}^{2}} \int d{\sigma }_{P} \int d{\sigma }_{Q}T({R}_{\omega }P)T({R}_{\omega }Q){P}_{n}(\cos {\psi }_{PQ}) \\ & =& \frac{2n + 1} {{(4\pi )}^{2}} \int d{\sigma }_{P \prime } \int d{\sigma }_{Q \prime }T(P \prime )T(Q \prime ){P}_{n}(\cos {\psi }_{P \prime Q \prime })\ ;\end{array}$$
(5.214)

the last equality is justified because ψ PQ  = ψ P′Q′ and the double integral over the sphere can be performed with any angular coordinates giving always the same result.

Now we organize the double integral in (5.214) as follows; first fix P′ and let Q′ circulate around P′ at a distance ψ P′Q′  = ψ; then integrate in dσ P′ ; then we finally let ψ to vary from 0 to π. We get, putting dσ Q′  = sinψdψdα into (5.214), recalling also the definition (5.38) and using (5.94),

$$\begin{array}{rcl} \sum\limits_{m=-n}^{n}{T}_{ nm}^{2}(\omega )& =& \frac{(2n + 1)} {2} \int\limits_{0}^{\pi }d\psi \sin \psi {P}_{ n}(\cos \psi ) \cdot \\ & &\cdot \frac{1} {8{\pi }^{2}} \int d{\sigma }_{P \prime }\int\limits_{{\psi }_{P \prime Q \prime }=\psi }T(P \prime )T(Q \prime )d{\alpha }_{Q \prime } \\ & =& \frac{2n + 1} {2} \int\limits_{0}^{\pi }d\psi \sin \psi {P}_{ n}(\cos \psi )C(\psi ) = {c}_{n},\end{array}$$
(5.215)

as it was to be proved.

1.2 A.2

We want to prove formula (5.156), providing the explicit form of K B (s, t) and K  − 2(s, t). We first expand (5.157) into the sum of fractions, with the identity

$$\begin{array}{rcl} \frac{n - 1} {(n - 2)(n + B)} \equiv \frac{B + 1} {B + 2} \frac{1} {n + B} + \frac{1} {B + 2} \frac{1} {n - 2}& & \\ \end{array}$$

so that we can write

$$\begin{array}{rcl}{ C}_{\Delta g\Delta g}(s,t)& =& A\left \{\frac{B + 1} {B + 2}\sum\limits_{n=3}^{+\infty } \frac{{s}^{n+2}} {n + B}{P}_{n}(t) + \frac{1} {B + 2}\sum\limits_{n=3}^{+\infty }\frac{{s}^{n+2}} {n - 2}{P}_{n}(t)\right \} \\ & =& A\left \{\frac{B + 1} {B + 2}{K}_{B}(s,t) + \frac{1} {B + 2}{K}_{-2}(s,t)\right \} \end{array}$$
(5.216)

We compute at first the last term:

$$\begin{array}{rcl}{ K}_{-2}(s,t)& =& {s}^{4}\sum\limits_{n=3}^{+\infty }\frac{{s}^{n-2}} {n - 2}{P}_{n}(t) \\ & =& {s}^{4}\int\limits_{0}^{s}\sum\limits_{n=3}^{+\infty }{\sigma }^{n-3}{P}_{ n}(t)d\sigma \\ & =& {s}^{4}\int\limits_{0}^{s} \frac{1} {{\sigma }^{3}}\left \{\sum\limits_{n=0}^{+\infty }{\sigma }^{n}{P}_{ n}(t) - 1 - \sigma t - {\sigma }^{2}{P}_{ 2}(t)\right \}d\sigma \\ & =& {s}^{4}\int\limits_{0}^{s} \frac{1} {{\sigma }^{3}}\left \{G(\sigma ,t) - 1 - \sigma t - {\sigma }^{2}{P}_{ 2}(t)\right \}d\sigma \\ & =& \frac{{s}^{2}} {2} [1 + 2ts - (3ts + 1){G}^{-1}(s,t)] - {s}^{4}{P}_{ 2}(t)\log \frac{1 - st + {G}^{-1}(s,t)} {2} \\ & & +{s}^{4}\frac{7{t}^{2} - 1} {4}. \end{array}$$
(5.217)

The last integral is calculated with the help of mathematical tables adjusting the integration constant in such a way that both members of (5.217), multiplied by s  − 4, tend to 0 when s tends to 0. As for the first term one writes, assuming B > 0,

$$\begin{array}{rcl}{ K}_{B}(s,t)& =& {s}^{2-B}\sum\limits_{n=3}^{+\infty }\frac{{s}^{n+B}} {n + B}{P}_{n}(t) \\ & =& {s}^{2-B}\int\limits_{0}^{s}\sum\limits_{n=3}^{+\infty }{\sigma }^{n+B-1}{P}_{ n}(t)d\sigma \\ & =& {s}^{2-B}\int\limits_{0}^{s}{\sigma }^{B-1}\left \{\sum\limits_{n=0}^{+\infty }{\sigma }^{n}{P}_{ n}(t) - 1 - \sigma t - {\sigma }^{2}{P}_{ 2}(t)\right \}d\sigma \\ & =& {s}^{2-B}\int\limits_{0}^{s}{\sigma }^{B-1}G(\sigma ,t)d\sigma -\frac{{s}^{2}} {B} - \frac{{s}^{3}} {B + 1}t - \frac{{s}^{4}} {B + 2}{P}_{2}(t).\end{array}$$
(5.218)

Now the integrals

$$\begin{array}{rcl}{ I}_{B} =\int\limits_{0}^{s}{\sigma }^{B-1}G(\sigma ,t)d\sigma & &\end{array}$$
(5.219)

can be computed, for integer values of B, by exploiting a recursive relation, namely

$$\begin{array}{rcl}{ I}_{k+1} = \frac{{s}^{k-1}} {k} {G}^{-1}(s,t) + \frac{(2k - 1)} {k} t{I}_{k} -\frac{k - 1} {k} {I}_{k-1}& &\end{array}$$
(5.220)

which is derived from the identity

$$\begin{array}{rcl} \frac{\partial } {\partial s}\left [{s}^{k-1}{G}^{-1}(s,t)\right ] = \left [k{s}^{k} - (2k - 1)t{s}^{k-1} + (k - 1){s}^{k-2}\right ]G(s,t),& &\end{array}$$
(5.221)

integrating both members from 0 to s and re-arranging. In order to trigger (5.220) we need two initial values of I k , for instance I 1, I 2. But I 1 has already been given in (5.152) and I 2 is easy to compute since, recalling (5.151),

$$\begin{array}{rcl}{ I}_{2}& =& \int\limits_{0}^{s}\sigma G(\sigma ,t)d\sigma =\int\limits_{0}^{s}(\sigma - t)G(\sigma ,t)d\sigma + t\int\limits_{0}^{s}G(\sigma ,t)d\sigma \\ & =& {G}^{-1}(s,t) - 1 + t{I}_{ 1}. \end{array}$$
(5.222)

The relations (5.216), (5.217), (5.220), (5.152) and (5.222) all together give the explicit form of the covariance function of Δg for every integer B. For a global use of this covariance the model (3.181) coming from the best fit of EGM08 degree variances between degrees 180 and 1,800, can be used, with the only warning that in (3.181) one has \({\overline{\sigma }}_{\mathcal{l}}^{2} = {c}_{\mathcal{l}}\left (\frac{T} {\gamma } \right )\), whereas we treat here c n (Δg) related to the former by the relation

$$\begin{array}{rcl}{ c}_{n}(\Delta g) = \frac{{(\mathcal{l} - 1)}^{2}} {{\overline{R}}^{2}} {c}_{n}(T) = \frac{{(\mathcal{l} - 1)}^{2}} {{\overline{R}}^{2}}{ \left (\frac{GM} {{\overline{R}}^{2}} \right )}^{2}{\overline{\sigma }}_{ \mathcal{l}}^{2}.& &\end{array}$$
(5.223)

We notice by the way that also the improved model (3.178) transformed according to (5.223) can be added by applying exactly the same methods presented in the Appendix and the decomposition

$$\begin{array}{rcl} \frac{\mathcal{l} - 1} {(\mathcal{l} - 2)(\mathcal{l} + 4)(\mathcal{l} + 17)} = \frac{1} {114}\ \frac{1} {\mathcal{l} - 2} + \frac{5} {78} \frac{1} {\mathcal{l} + 4} - \frac{18} {247}\ \frac{1} {\mathcal{l} + 17}.& &\end{array}$$
(5.224)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sansò, F., Sideris, M.G. (2013). The Local Modelling of the Gravity Field by Collocation. In: Sansò, F., Sideris, M. (eds) Geoid Determination. Lecture Notes in Earth System Sciences, vol 110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74700-0_5

Download citation

Publish with us

Policies and ethics