Skip to main content

Part of the book series: Springer Series in chemical physics ((CHEMICAL,volume 90))

  • 1257 Accesses

Traditional thermodynamics evolved from Carnot’s introduction of the concept of the ideal reversible process, a process that would proceed infi- nitely slowly. Precisely because of that constraint, such a process would incur none of the losses of friction or other kinds of dissipation that result from real-time operation. The concepts of thermodynamic potentials such as the free energies provide limits of performance based on exactly those reversible processes as the standards of comparison with real processes. Onsager and then others showed that one can say useful things about irreversible processes, especially those near equilibrium. An entire field of engineering thermodynamics grew out of the concept of ‘local thermal equilibrium’ or LTE, in which one can describe a large system such as a flow process in terms of how the system changes as it moves, in effect, through a succession of steps which may be near or quite far from true thermodynamic equilibrium but that can be assigned local temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.L. Curzon, B. Ahlborn, Am. J. Phys. 43, 22–24 (1975)

    Article  ADS  Google Scholar 

  2. B. Andresen, S.R. Berry, A. Nitzan, P. Salamon, Phys. Rev. A 15, 2086–2093 (1977)

    Article  ADS  Google Scholar 

  3. P. Salamon, B. Andresen, R.S. Berry, Phys. Rev. A 15, 2094–2102 (1977)

    Article  ADS  Google Scholar 

  4. P. Salamon, A. Nitza, B. Andresen, S.R. Berry, Phys. Rev. A 21, 2115–2129 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  5. D. Gutkowitz-Krusin, I. Procaccia, J. Ross, J. Chem. Phys. 69, 3898–3906 (1978)

    Article  ADS  Google Scholar 

  6. M.H. Rubin, Phys. Rev. A 19, 1277–1289 (1979)

    Article  ADS  Google Scholar 

  7. M.H. Rubin, Phys. Rev. A 19, 1272–1276 (1979)

    Article  ADS  Google Scholar 

  8. M. Mozurkewich, R.S. Berry, J. Appl. Phys. 53, 34–42 (1982)

    Article  ADS  Google Scholar 

  9. M. Mozurkewich, R.S. Berry, J. Appl. Phys. 54, 3651–3661 (1983)

    Article  ADS  Google Scholar 

  10. O. Mullins, R.S. Berry, J. Phys. Chem. 88, 723–728 (1984)

    Article  Google Scholar 

  11. M. Schaller, K.H. Hoffman, R. Rivero, B. Andresen, P. Salamon, J. Nonequil. Thermo. 27, 257–269 (2002)

    MATH  Google Scholar 

  12. P. Salamon, P. Hoffman, K.H. Schubert S. Berry, R. Andresen, J. Nonequilib. Thermo. 26, 73–83 (2001)

    MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berry, R.S. (2008). Finite-Time Thermodynamics. In: Thermodynamics and Fluctuations far from Equilibrium. Springer Series in chemical physics, vol 90. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74555-6_14

Download citation

Publish with us

Policies and ethics