Skip to main content

N-Acyl Homoserine Lactone Quorum Sensing in Gram-Negative Rhizobacteria

  • Chapter
Secondary Metabolites in Soil Ecology

Part of the book series: Soil Biology ((SOILBIOL,volume 14))

In the last 15 years microbiologists have become aware that in most bacteria a major level of regulation exists which involves intercellular communication via the production and response to signal molecules. The concentration of the signal molecules increases alongside the bacterial population density and when it reaches a critical level, when a sufficient number of cells are present, bacteria respond and modulate gene expression. This cell-density-dependent modulation of gene expression has been termed quorum sensing (QS) (Fuqua et al. 1994). This allows bacteria to modify their behavior and act as multicellular entities; it is believed that in natural ecosystems bacteria are always aiming at establishing communities rather than choosing to exist as solitary cells. The reason being that intercellular communication provides significant advantages to a group of bacteria such as improving access to environmental niches, enhancing its defense capabilities against other microorganisms or eukaryotic host-defense mechanisms, and facilitating the adaptation to changing environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilar C, Bertani I, Venturi V (2003a) Quorum-sensing system and stationary-phase sigma factor (rpoS) of the onion pathogen Burkholderia cepacia genomovar I type strain, ATCC 25416. Appl Environ Microbiol 69:1739–1747

    Article  PubMed  CAS  Google Scholar 

  • Aguilar C, Friscina A, Devescovi G, Kojic M, Venturi V (2003b) Identification of quorum-sensing-regulated genes of Burkholderia cepacia. J Bacteriol 185:6456–6462

    Article  PubMed  CAS  Google Scholar 

  • Andersson RA, Eriksson AR, Heikinheimo R, Mae A, Pirhonen M, Koiv V, Hyytiainen H, Tuikkala A, Palva ET (2000) Quorum sensing in the plant pathogen Erwinia carotovora subsp. carotovora: the role of expR(Ecc). Mol Plant Microbe Interact 13:384–393

    Article  PubMed  CAS  Google Scholar 

  • Bailey BA (1995) Purification of a protein from culture filtrates of Fusarium oxysporum that induces ethylene and necrosis in leaves of Erythroxylum coca. Phytopathology 85:1250–1255

    Article  CAS  Google Scholar 

  • Bainton NJ, Stead P, Chhabra SR, Bycroft BW, Salmond GP, Stewart GS, Williams P (1992).N-(3-Oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochem J 288:997–1004

    PubMed  CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  PubMed  CAS  Google Scholar 

  • Barber CE, Tang JL, Feng JX, Pan MQ, Wilson TJ, Slater H, Dow JM, Williams P, Daniels MJ (1997) A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol 24:555–566

    Article  PubMed  CAS  Google Scholar 

  • Barras F, van Gijsegem F, Chatterjee AK (1994) Extracellular enzymes and pathogenesis of soft-rot Erwinia. Annu Rev Phytopathol 32:201–234

    CAS  Google Scholar 

  • Bassler BL (2002) Small talk. Cell-to-cell communication in bacteria. Cell 109:421–424

    Article  PubMed  CAS  Google Scholar 

  • Bauer WD, Mathesius U (2004) Plant responses to bacterial quorum sensing signals. Curr Opin Plant Biol 7:429–433

    Article  PubMed  CAS  Google Scholar 

  • Beck von Bodman S, Farrand SK (1995) Capsular polysaccharide biosynthesis and pathogenicity in Erwinia stewartii require induction by an N-acylhomoserine lactone autoinducer. J Bacteriol 177:5000–5008

    Google Scholar 

  • Beck von Bodman SB, Majerczak DR, Coplin DL (1998) A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. Proc Natl Acad Sci USA 95(13):7687–7692

    Article  Google Scholar 

  • Bernier SP, Silo-Suh L, Woods DE, Ohman DE, Sokol PA (2003) Comparative analysis of plant and animal models for characterization of Burkholderia cepacia virulence. Infect Immun 71:5306–13

    Article  PubMed  CAS  Google Scholar 

  • Bertani I, Venturi V (2004) Regulation of the N-acyl homoserine lactone-dependent quorum-sensing system in rhizosphere Pseudomonas putida WCS358 and cross-talk with the stationary-phase RpoS sigma factor and the global regulator GacA. Appl Environ Microbiol 70:5493–502

    Article  PubMed  CAS  Google Scholar 

  • Burkholder WH (1950) Sour skin, a bacterial rot of onion bulbs. Phytopathology 40:115–117

    Google Scholar 

  • Cha C, Gao P, Chen YC, Shaw PD, Farrand SK (1998) Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol Plant Microbe Interact 11:1119–1129

    Article  PubMed  CAS  Google Scholar 

  • Chancey ST, Wood DW, Pierson LS 3rd (1999) Two-component transcriptional regulation of.N-acyl-homoserine lactone production in Pseudomonas aureofaciens. Appl Environ Microbiol 65:2294–2299

    PubMed  CAS  Google Scholar 

  • Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549

    Article  PubMed  CAS  Google Scholar 

  • Chin AWTF, van den Broek D, de Voer G, van der Drift KM, Tuinman S, Thomas-Oates JE, Lugtenberg BJ, Bloemberg GV (2001) Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol Plant Microbe Interact 14:969–979

    Article  Google Scholar 

  • Chin AWTF, van den Broek D, Lugtenberg BJ, Bloemberg GV (2005) The Pseudomonas chlororaphis PCL1391 sigma regulator psrA represses the production of the antifungal metabolite phenazine-1-carboxamide. Mol Plant Microbe Interact 18:244–253

    Article  CAS  Google Scholar 

  • Coenye T, Vandamme P (2003) Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729

    Article  PubMed  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4659

    Article  PubMed  CAS  Google Scholar 

  • Conway BA, Greenberg EP (2002) Quorum-sensing signals and quorum-sensing genes in Burkholderia vietnamiensis. J Bacteriol 184:1187–1191

    Article  PubMed  CAS  Google Scholar 

  • Corbett M, Virtue S, Bell K, Birch P, Burr T, Hyman L, Lilley K, Poock S, Toth I, Salmond G (2005) Identification of a new quorum-sensing-controlled virulence factor in Erwinia carotovora subsp. atroseptica secreted via the type II targeting pathway. Mol Plant Microbe Interact 18:334–342

    Article  PubMed  CAS  Google Scholar 

  • Costa JM, Loper JE (1997) EcbI and EcbR: homologs of LuxI and LuxR affecting antibiotic and exoenzyme production by Erwinia carotovora subsp. betavasculorum. Can J Microbiol 43:1164–1171

    Article  PubMed  CAS  Google Scholar 

  • Cubo MT, Economou A, Murphy G, Johnston AW, Downie JA (1992) Molecular characterization and regulation of the rhizosphere-expressed genes rhiABCR that can influence nodulation by Rhizobium leguminosarum biovar viciae. J Bacteriol 174:4026–4035

    PubMed  CAS  Google Scholar 

  • Daniels R, De Vos DE, Desair J, Raedschelders G, Luyten E, Rosemeyer V, Verreth C, Schoeters E, Vanderleyden J, Michiels J (2002) The cin quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. J Biol Chem 277:462–468

    Article  PubMed  CAS  Google Scholar 

  • Danino VE, Wilkinson A, Edwards A, Downie JA (2003) Recipient-induced transfer of the symbiotic plasmid pRL1JI in Rhizobium leguminosarum bv. viciae is regulated by a quorum-sensing relay. Mol Microbiol 50:511–525

    Article  PubMed  CAS  Google Scholar 

  • Dong YH, Zhang LH (2005) Quorum sensing and quorum-quenching enzymes. J Microbiol 43:101–109

    PubMed  CAS  Google Scholar 

  • Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817

    Article  PubMed  CAS  Google Scholar 

  • Dong YH, Zhang XF, Xu JL, Zhang LH (2004) Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Appl Environ Microbiol 70:954–960

    Article  PubMed  CAS  Google Scholar 

  • Dumenyo CK, Mukherjee A, Chun W, Chatterjee AK (1998) Genetic and physiological evidence for the production of N-acyl homoserine lactones by Pseudomonas syringae pv. syringae and other fluorescent plant pathogenic Pseudomonas species. Eur J Plant Pathol 104:569–582

    Article  CAS  Google Scholar 

  • Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B, Glickmann E, Oger PM, Dessaux Y (2001) Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl Environ Microbiol 67:1198–1209

    Article  PubMed  CAS  Google Scholar 

  • Fineran PC, Slater H, Everson L, Hughes K, Salmond GP (2005) Biosynthesis of tripyrrole and beta-lactam secondary metabolites in Serratia: integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production. Mol Microbiol 56:1495–1517

    Article  PubMed  CAS  Google Scholar 

  • Flavier AB, Clough SJ, Schell MA, Denny TP (1997a) Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum. Mol Microbiol 26:251–259

    Article  PubMed  CAS  Google Scholar 

  • Flavier AB, Ganova-Raeva LM, Schell MA, Denny TP (1997b) Hierarchical autoinduction in Ralstonia solanacearum: control of acyl-homoserine lactone production by a novel autoregulatory system responsive to 3-hydroxypalmitic acid methyl ester. J Bacteriol 179:7089–7097

    PubMed  CAS  Google Scholar 

  • Flavier AB, Schell MA, Denny TP (1998) An RpoS (sigmaS) homologue regulates acylhomoserine lactone-dependent autoinduction in Ralstonia solanacearum. Mol Microbiol 28:475–486

    Article  PubMed  CAS  Google Scholar 

  • Fray RG, Throup JP, Daykin M, Wallace A, Williams P, Stewart GS, Grierson D (1999) Plants genetically modified to produce N-acylhomoserine lactones communicate with bacteria. Nat Biotechnol 17:1017–1020

    Article  PubMed  CAS  Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275

    PubMed  CAS  Google Scholar 

  • Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468

    Article  PubMed  CAS  Google Scholar 

  • Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300

    Article  PubMed  CAS  Google Scholar 

  • Gao M, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant Microbe Interact 16:827–834

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez JE, Marketon MM (2003) Quorum sensing in nitrogen-fixing rhizobia. Microbiol Mol Biol Rev 67:574–592

    Article  PubMed  CAS  Google Scholar 

  • Gotschlich A, Huber B, Geisenberger O, Togl A, Steidle A, Riedel K, Hill P, Tummler B, Vandamme P, Middleton B, Camara M, Williams P, Hardman A, Eberl L (2001) Synthesis of multiple N-acylhomoserine lactones is wide-spread among the members of the Burkholderia cepacia complex. Syst Appl Microbiol 24:1–14

    Article  PubMed  CAS  Google Scholar 

  • Grimont PA, Grimont F (1978) The genus Serratia. Annu Rev Microbiol 32:221–248

    Article  PubMed  CAS  Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  PubMed  CAS  Google Scholar 

  • Ham JH, Cui Y, Alfano JR, Rodriguez-Palenzuela P, Rojas CM, Chatterjee AK, Collmer A (2004) Analysis of Erwinia chrysanthemi EC16 4 pelE:uidA, pelL:uidA, and hrpN:uidA mutants reveals strain-specific atypical regulation of the Hrp type III secretion system. Mol Plant Microbe Interact 17:184–194

    Article  PubMed  CAS  Google Scholar 

  • Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P, Manefield M, Costerton JW, Molin S, Eberl L, Steinberg P, Kjelleberg S, Hoiby N, Givskov M (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815

    Article  PubMed  CAS  Google Scholar 

  • Huber B, Feldmann F, Kothe M, Vandamme P, Wopperer J, Riedel K, Eberl L (2004) Identification of a novel virulence factor in Burkholderia cenocepacia H111 required for efficient slow killing of Caenorhabditis elegans. Infect Immun 72:7220–7230

    Article  PubMed  CAS  Google Scholar 

  • Jones S, Yu B, Bainton NJ, Birdsall M, Bycroft BW, Chhabra SR, Cox AJ, Golby P, Reeves PJ, Stephens S, Winson MK, Salmond GP, Stewart G, Williams P (1993) The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. EMBO J 12:2477–2482

    PubMed  CAS  Google Scholar 

  • Juhas M, Eberl L, Tummler B (2005) Quorum sensing: the power of cooperation in the world of Pseudomonas. Environ Microbiol 7:459–471

    Article  PubMed  CAS  Google Scholar 

  • Khan SR, Mavrodi DV, Jog GJ, Suga H, Thomashow LS, Farrand SK (2005) Activation of the phz operon of Pseudomonas fluorescens 2–79 requires the LuxR homolog PhzR, N-(3-OH-hexanoyl)-L-homoserine lactone produced by the LuxI homolog PhzI, and a cis-acting phz box. J Bacteriol 187:6517–6527

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Kim JG, Kang Y, Jang JY, Jog GJ, Lim JY, Kim S, Suga H, Nagamatsu T, Hwang I (2004) Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae. Mol Microbiol 54:921–934

    Article  PubMed  CAS  Google Scholar 

  • Kohler T, van Delden C, Curty LK, Hamzehpour MM, Pechere JC (2001) Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J Bacteriol 183:5213–5222

    Article  PubMed  CAS  Google Scholar 

  • Labbate M, Queck SY, Koh KS, Rice SA, Givskov M, Kjelleberg S (2004) Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1. J Bacteriol 186:692–698

    Article  PubMed  CAS  Google Scholar 

  • Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A (1996) A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21:1137–1146

    Article  PubMed  CAS  Google Scholar 

  • Lewenza S, Visser MB, Sokol PA (2002) Interspecies communication between Burkholderia cepacia and Pseudomonas aeruginosa. Can J Microbiol 48:707–716

    Article  PubMed  CAS  Google Scholar 

  • Lindum PW, Anthoni U, Christophersen C, Eberl L, Molin S, Givskov M (1998) N-Acyl-L-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens MG1. J Bacteriol 180:6384–6388

    PubMed  CAS  Google Scholar 

  • Lithgow JK, Wilkinson A, Hardman A, Rodelas B, Wisniewski-Dye F, Williams P, Downie JA (2000) The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci. Mol Microbiol 37:81–97

    Article  PubMed  CAS  Google Scholar 

  • Loh J, Pierson EA, Pierson LS 3rd, Stacey G, Chatterjee A (2002) Quorum sensing in plant-associated bacteria. Curr Opin Plant Biol 5:285–290

    Article  PubMed  CAS  Google Scholar 

  • Lutter E, Lewenza S, Dennis JJ, Visser MB, Sokol PA (2001) Distribution of quorum-sensing genes in the Burkholderia cepacia complex. Infect Immun 69:4661–4666

    Article  PubMed  CAS  Google Scholar 

  • Mae A, Montesano M, Koiv V, Palva ET (2001) Transgenic plants producing the bacterial pheromone N-acyl-homoserine lactone exhibit enhanced resistance to the bacterial phytopathogen Erwinia carotovora. Mol Plant Microbe Interact 14:1035–1042

    Article  PubMed  CAS  Google Scholar 

  • Mahenthiralingam E, Urban TA, Goldberg JB (2005) The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3:144–156

    Article  PubMed  CAS  Google Scholar 

  • Malott RJ, Baldwin A, Mahenthiralingam E, Sokol PA (2005) Characterization of the cciIR quorum-sensing system in Burkholderia cenocepacia. Infect Immun 73:4982–4992

    Article  PubMed  CAS  Google Scholar 

  • Marketon MM, Gonzalez JE (2002) Identification of two quorum-sensing systems in Sinorhizobium meliloti. J Bacteriol 184:3466–3475

    Article  PubMed  CAS  Google Scholar 

  • Marketon MM, Glenn SA, Eberhard A, Gonzalez JE (2003) Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. J Bacteriol 185:325–331

    Article  PubMed  CAS  Google Scholar 

  • Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anolles G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 100:1444–1449

    Article  PubMed  CAS  Google Scholar 

  • McGowan S, Sebaihia M, Jones S, Yu B, Bainton N, Chan PF, Bycroft B, Stewart GS, Williams P, Salmond GP (1995) Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional activator. Microbiology 141:541–550

    Article  PubMed  CAS  Google Scholar 

  • McGowan SJ, Barnard AM, Bosgelmez G, Sebaihia M, Simpson NJ, Thomson NR, Todd DE, Welch M, Whitehead NA, Salmond GP (2005) Carbapenem antibiotic biosynthesis in Erwinia carotovora is regulated by physiological and genetic factors modulating the quorum sensing-dependent control pathway. Mol Microbiol 55:526–545

    Article  PubMed  CAS  Google Scholar 

  • McKenney D, Brown KE, Allison DG (1995) Influence of Pseudomonas aeruginosa exoproducts on virulence factor production in Burkholderia cepacia: evidence of interspecies communication. J Bacteriol 177:6989–6992

    PubMed  CAS  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  PubMed  CAS  Google Scholar 

  • Molina L, Rezzonico F, Defago G, Duffy B (2005) Autoinduction in Erwinia amylovora: evidence of an acyl-homoserine lactone signal in the fire blight pathogen. J Bacteriol 187:3206–3213

    Article  PubMed  CAS  Google Scholar 

  • Nasser W, Bouillant ML, Salmond G, Reverchon S (1998) Characterization of the Erwinia chrysanthemi expI-expR locus directing the synthesis of two N-acyl-homoserine lactone signal molecules. Mol Microbiol 29:1391–1405

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan LA, Mahenthiralingam E (2005) Biotechnological potential within the genus Burkholderia. Lett Appl Microbiol 41:8–11

    Article  PubMed  CAS  Google Scholar 

  • Ovadis M, Liu X, Gavriel S, Ismailov Z, Chet I, Chernin L (2004) The global regulator genes from biocontrol strain Serratia plymuthica IC1270: cloning, sequencing, and functional studies. J Bacteriol 186:4986–4993

    Article  PubMed  CAS  Google Scholar 

  • Pearson JP, Van Delden C, Iglewski BH (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181:1203–1210

    PubMed  CAS  Google Scholar 

  • Pemberton CL, Whitehead NA, Sebaihia M, Bell KS, Hyman LJ, Harris SJ, Matlin AJ, Robson ND, Birch PR, Carr JP, Toth IK, Salmond GP (2005) Novel quorum-sensing-controlled genes in Erwinia carotovora subsp. carotovora: identification of a fungal elicitor homologue in a soft-rotting bacterium. Mol Plant Microbe Interact 18:343–353

    Article  PubMed  CAS  Google Scholar 

  • Perombelon MCM (2002) Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathol 51:1–12

    Article  Google Scholar 

  • Pierson LS 3rd, Keppenne VD, Wood DW (1994) Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30–84 is regulated by PhzR in response to cell density. J Bacteriol 176:3966–3674

    PubMed  CAS  Google Scholar 

  • Pierson LS 3rd, Gaffney T, Lam S, Gong F (1995) Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium Pseudomonas aureofaciens 30–84. FEMS Microbiol Lett 134:299–307

    PubMed  CAS  Google Scholar 

  • Pierson EA, Wood DW, Cannon JA, Blachere FM, Pierson LS (1998a) Interpopulation signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere. Mol Plant Microbe Interact 11:1078–1084

    Article  CAS  Google Scholar 

  • Pierson LS 3rd, Wood DW, Pierson EA (1998b) Homoserine lactone-mediated gene regulation in plant-associated bacteria. Annu Rev Phytopathol 36:207–225

    Article  PubMed  CAS  Google Scholar 

  • Quinones B, Pujol CJ, Lindow SE (2004) Regulation of AHL production and its contribution to epiphytic fitness in Pseudomonas syringae. Mol Plant Microbe Interact 17:521–531

    Article  PubMed  CAS  Google Scholar 

  • Riedel K, Hentzer M, Geisenberger O, Huber B, Steidle A, Wu H, Hoiby N, Givskov M, Molin S, Eberl L (2001) N-Acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 147:3249–3262

    PubMed  CAS  Google Scholar 

  • Riedel K, Arevalo-Ferro C, Reil G, Gorg A, Lottspeich F, Eberl L (2003) Analysis of the quorum-sensing regulon of the opportunistic pathogen Burkholderia cepacia H111 by proteomics. Electrophoresis 24:740–750

    Article  PubMed  CAS  Google Scholar 

  • Rodelas B, Lithgow JK, Wisniewski-Dye F, Hardman A, Wilkinson A, Economou A, Williams P, Downie JA (1999) Analysis of quorum-sensing-dependent control of rhizosphere-expressed (rhi) genes in Rhizobium leguminosarum bv. viciae. J Bacteriol 181:3816–3823

    PubMed  CAS  Google Scholar 

  • Ruby EG (1996) Lessons from a cooperative, bacterial-animal association: the Vibrio fischeri-Euprymna scolopes light organ symbiosis. Annu Rev Microbiol 50:591–624

    Article  PubMed  CAS  Google Scholar 

  • Schuster M, Lostroh CP, Ogi T, Greenberg EP (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079

    Article  PubMed  CAS  Google Scholar 

  • Seed PC, Passador L, Iglewski BH (1995) Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. J Bacteriol 177:654–659

    PubMed  CAS  Google Scholar 

  • Shaw PD, Ping G, Daly SL, Cha C, Cronan JE Jr, Rinehart KL, Farrand SK (1997) Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci USA 94:6036–6041

    Article  PubMed  CAS  Google Scholar 

  • Slater H, Crow M, Everson L, Salmond GP (2003) Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways. Mol Microbiol 47:303–320

    Article  PubMed  CAS  Google Scholar 

  • Smadja B, Latour X, Faure D, Chevalier S, Dessaux Y, Orange N (2004) Involvement of.N-acylhomoserine lactones throughout plant infection by Erwinia carotovora subsp. atroseptica (Pectobacterium atrosepticum). Mol Plant Microbe Interact 17:1269–1278

    Article  PubMed  CAS  Google Scholar 

  • Smith RS, Iglewski BH (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6:56–60

    Article  PubMed  CAS  Google Scholar 

  • Sokol PA, Sajjan U, Visser MB, Gingues S, Forstner J, Kooi C (2003) The CepIR quorum-sensing system contributes to the virulence of Burkholderia cenocepacia respiratory infections. Microbiology 149:3649–3658

    Article  PubMed  CAS  Google Scholar 

  • Steidle A, Sigl K, Schuhegger R, Ihring A, Schmid M, Gantner S, Stoffels M, Riedel K, Givskov M, Hartmann A, Langebartels C, Eberl L (2001) Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl Environ Microbiol 67:5761–5770

    Article  PubMed  CAS  Google Scholar 

  • Steidle A, Allesen-Holm M, Riedel K, Berg G, Givskov M, Molin S, Eberl L (2002) Identification and characterization of an N-acylhomoserine lactone-dependent quorum-sensing system in Pseudomonas putida strain IsoF. Appl Environ Microbiol 68:6371–6382

    Article  PubMed  CAS  Google Scholar 

  • Sturme MH, Kleerebezem M, Nakayama J, Akkermans AD, Vaugha EE, de Vos WM (2002) Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie Van Leeuwenhoek 81:233–243

    Article  PubMed  CAS  Google Scholar 

  • Swift S, Winson MK, Chan PF, Bainton NJ, Birdsall M, Reeves PJ, Rees CE, Chhabra SR, Hill PJ, Throup JP et al (1993) A novel strategy for the isolation of luxI homologues: evidence for the widespread distribution of a LuxR:LuxI superfamily in enteric bacteria. Mol Microbiol 10:511–520

    Article  PubMed  CAS  Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial. N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13:637–648

    Article  PubMed  CAS  Google Scholar 

  • Teplitski M, Chen H, Rajamani S, Gao M, Merighi M, Sayre RT, Robinson JB, Rolfe BG, Bauer WD (2004) Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria. Plant Physiol 134:137–146

    Article  PubMed  CAS  Google Scholar 

  • Thomson NR, Crow MA, McGowan SJ, Cox A, Salmond GP (2000) Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol Microbiol 36:539–556

    Article  PubMed  CAS  Google Scholar 

  • Tun-Garrido C, Bustos P, Gonzalez V, Brom S (2003) Conjugative transfer of p42a from Rhizobium etli CFN42, which is required for mobilization of the symbiotic plasmid, is regulated by quorum sensing. J Bacteriol 185:1681–1692

    Article  PubMed  CAS  Google Scholar 

  • Venturi V, Friscina A, Bertani I, Devescovi G, Aguilar C (2004a) Quorum sensing in the Burkholderia cepacia complex. Res Microbiol 155:238–244

    Article  PubMed  CAS  Google Scholar 

  • Venturi V, Venuti C, Devescovi G, Lucchese C, Friscina A, Degrassi G, Aguilar C, Mazzucchi U (2004b) The plant pathogen Erwinia amylovora produces acyl-homoserine lactone signal molecules in vitro and in planta. FEMS Microbiol Lett 241:179–83

    Article  PubMed  CAS  Google Scholar 

  • Von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482

    Article  PubMed  CAS  Google Scholar 

  • Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH (2003) Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 185:2080–2095

    Article  PubMed  CAS  Google Scholar 

  • Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25:365–404

    Article  PubMed  CAS  Google Scholar 

  • Whiteley M, Lee KM, Greenberg EP (1999) Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:13904–13909

    Article  PubMed  CAS  Google Scholar 

  • Williams P, Bainton NJ, Swift S, Chhabra SR, Winson MK, Stewart GS, Salmond GP, Bycroft BW (1992) Small molecule-mediated density-dependent control of gene expression in prokaryotes: bioluminescence and the biosynthesis of carbapenem antibiotics. FEMS Microbiol Lett 79:161–167

    PubMed  CAS  Google Scholar 

  • Wisniewski-Dye F, Jones J, Chhabra SR, Downie JA (2002) raiIR genes are part of a quorum-sensing network controlled by cinI and cinR in Rhizobium leguminosarum. J Bacteriol 184:1597–1606

    Article  PubMed  CAS  Google Scholar 

  • Wood DW, Gong F, Daykin MM, Williams P, Pierson LS 3rd (1997) N-Acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30–84 in the wheat rhizosphere. J Bacteriol 179:7663–7670

    PubMed  CAS  Google Scholar 

  • Yao F, Zhou H, Lessie TG (2002) Characterization of N-acyl homoserine lactone overproducing mutants of Burkholderia multivorans ATCC 17616. FEMS Microbiol Lett 206:201–207

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Pierson LS 3rd (2001) A second quorum-sensing system regulates cell surface properties but not phenazine antibiotic production in Pseudomonas aureofaciens. Appl Environ Microbiol 67:4305–4315

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ferluga, S., Steindler, L., Venturi, V. (2008). N-Acyl Homoserine Lactone Quorum Sensing in Gram-Negative Rhizobacteria. In: Karlovsky, P. (eds) Secondary Metabolites in Soil Ecology. Soil Biology, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74543-3_4

Download citation

Publish with us

Policies and ethics