Skip to main content

Nets, (t, s)-Sequences, and Codes

  • Conference paper
Monte Carlo and Quasi-Monte Carlo Methods 2006

Summary

Nets and (t, s)-sequences are standard sources of quasirandom points for quasi-Monte Carlo methods. Connections between nets and error-correcting codes have been noticed for a long time, and these links have become even more pronounced with the development of the duality theory for digital nets. In this paper, we further explore these fascinating connections. We present also a recent construction of digital (t, s)-sequences using global function fields and new general constructions of nets and (t, s)-sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bierbrauer, Y. Edel, and W.Ch. Schmid. Coding-theoretic constructions for (t, m, s)-nets and ordered orthogonal arrays. J. Combin. Designs 10, 403-418 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Dick. Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order. Preprint, 2006.

    Google Scholar 

  3. J. Dick. Explicit constructions of quasi-Monte Carlo rules for the numerical integration of high dimensional periodic functions. Preprint, 2006.

    Google Scholar 

  4. S.T. Dougherty and M.M. Skriganov. Maximum distance separable codes in the ρ metric over arbitrary alphabets. J. Algebraic Combinatorics 16, 71-81 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  5. H. Faure. Discrépance de suites associées à un système de numération (en dimension s). Acta Arith. 41, 337-351 (1982).

    MATH  MathSciNet  Google Scholar 

  6. G. Kuperberg. Numerical cubature using error-correcting codes. SIAM J. Numer. Analysis 44, 897-907 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  7. G. Larcher and H. Niederreiter. Generalized (t, s)-sequences, Kronecker-type sequences, and diophantine approximations of formal Laurent series. Trans. Amer. Math. Soc. 347, 2051-2073 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Lidl and H. Niederreiter. Introduction to Finite Fields and Their Applications. Revised ed., Cambridge University Press, Cambridge, 1994.

    MATH  Google Scholar 

  9. R. Lidl and H. Niederreiter. Finite Fields. Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  10. S. Ling and C.P. Xing. Coding Theory: A First Course. Cambridge University Press, Cambridge, 2004.

    Google Scholar 

  11. D.J.S. Mayor and H. Niederreiter. A new construction of (t, s)-sequences and some improved bounds on their quality parameter. Acta Arith., to appear.

    Google Scholar 

  12. F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes. North-Holland, Amsterdam, 1977.

    Google Scholar 

  13. H. Niederreiter. Error bounds for quasi-Monte Carlo integration with uniform point sets. J. Comput. Appl. Math. 150, 283-292 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  14. H. Niederreiter. Digital nets and coding theory. Coding, Cryptography and Combinatorics (K.Q. Feng, H. Niederreiter, and C.P. Xing, eds.), pp. 247-257, Birkhäuser, Basel, 2004.

    Google Scholar 

  15. H. Niederreiter. Constructions of (t, m, s)-nets and (t, s)-sequences. Finite Fields Appl. 11, 578-600 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Niederreiter. Orthogonal systems of polynomials in finite fields. Proc. Amer. Math. Soc. 28, 415-422 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  17. H. Niederreiter. Low-discrepancy point sets. Monatsh. Math. 102, 155-167 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  18. H. Niederreiter. Point sets and sequences with small discrepancy. Monatsh. Math. 104, 273-337 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  19. H. Niederreiter. Low-discrepancy and low-dispersion sequences. J. Number Theory 30, 51-70 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  20. H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia, 1992.

    MATH  Google Scholar 

  21. H. Niederreiter and F. Özbudak. Constructions of digital nets using global function fields. Acta Arith. 105, 279-302 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  22. H. Niederreiter and F. Özbudak. Matrix-product constructions of digital nets. Finite Fields Appl. 10, 464-479 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  23. H. Niederreiter and F. Özbudak. Low-discrepancy sequences using duality and global function fields. Acta Arith., to appear.

    Google Scholar 

  24. H. Niederreiter and G. Pirsic. Duality for digital nets and its applications. Acta Arith. 97, 173-182 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  25. H. Niederreiter and G. Pirsic. A Kronecker product construction for digital nets. Monte Carlo and Quasi-Monte Carlo Methods 2000 (K.-T. Fang, F.J. Hickernell, and H. Niederreiter, eds.), pp. 396-405, Springer, Berlin, 2002.

    Google Scholar 

  26. H. Niederreiter and C.P. Xing. Rational Points on Curves over Finite Fields: Theory and Applications. Cambridge University Press, Cambridge, 2001.

    Google Scholar 

  27. H. Niederreiter and C.P. Xing. Quasirandom points and global function fields. Finite Fields and Applications (S. Cohen and H. Niederreiter, eds.), pp. 269-296, Cambridge University Press, Cambridge, 1996.

    Google Scholar 

  28. H. Niederreiter and C.P. Xing. Low-discrepancy sequences and global function fields with many rational places. Finite Fields Appl. 2, 241-273 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  29. G. Pirsic, J. Dick, and F. Pillichshammer. Cyclic digital nets, hyperplane nets, and multivariate integration in Sobolev spaces. SIAM J. Numer. Analysis 44, 385-411 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  30. G. Pirsic. A small taxonomy of integration node sets. Sitzungsber. Österr. Akad. Wiss. Math.-Naturwiss. Kl. Abt. II 214, 133-140 (2005).

    MathSciNet  Google Scholar 

  31. M.Yu. Rosenbloom and M.A. Tsfasman. Codes for the m-metric. Problems Inform. Transmission 33, 45-52 (1997).

    MATH  Google Scholar 

  32. I. Siap and M. Ozen. The complete weight enumerator for codes over Mn×s (R). Applied Math. Letters 17, 65-69 (2004).

    MATH  MathSciNet  Google Scholar 

  33. I.M. Sobol’. Distribution of points in a cube and approximate evaluation of integrals (Russian). Ž. Vyčisl. Mat. i Mat. Fiz. 7, 784-802 (1967).

    MathSciNet  Google Scholar 

  34. R. Schürer and W.Ch. Schmid. MinT: A database for optimal net parame-ters. Monte Carlo and Quasi-Monte Carlo Methods 2004 (H. Niederreiter and D. Talay, eds.), pp. 457-469, Springer, Berlin, 2006.

    Google Scholar 

  35. H. Stichtenoth. Algebraic Function Fields and Codes. Springer, Berlin, 1993.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Niederreiter, H. (2008). Nets, (t, s)-Sequences, and Codes. In: Keller, A., Heinrich, S., Niederreiter, H. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74496-2_5

Download citation

Publish with us

Policies and ethics