Skip to main content

Minimal Errors for Strong and Weak Approximation of Stochastic Differential Equations

  • Conference paper
Monte Carlo and Quasi-Monte Carlo Methods 2006

Summary

We present a survey of results on minimal errors and optimality of algorithms for strong and weak approximation of systems of stochastic differential equations. For strong approximation, emphasis lies on the analysis of algorithms that are based on point evaluations of the driving Brownian motion and on the impact of non-commutativity, if present. Furthermore, we relate strong approximation to weighted integration and reconstruction of Brownian motion, and we demonstrate that the analysis of minimal errors leads to new algorithms that perform asymptotically optimal. In particular, these algorithms use a path-dependent step-size control. for weak approximation we consider the problem of computing the expected value of a functional of the solution, and we concentrate on recent results for a worst-case analysis either with respect to the functional or with respect to the coefficients of the system. Moreover, we relate weak approximation problems to average Kolmogorov widths and quantization numbers as well as to high-dimensional tensor product problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. T. H. Baker and E. Buckwar. Numerical analysis of explicit one-step methods for stochastic delay differential equations. LMS J. Comput. Math. 3, 315-335 (2000).

    MATH  MathSciNet  Google Scholar 

  2. E. Buckwar and T. Shardlow. Weak approximation of stochastic dif-ferential delay equations. IMA J. Numer. Anal. 25, 57-86 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  3. B. Boufoussi and C. A. Tudor. Kramers-Smoluchowski approximation for stochastic evolution equations with FBM. Rev. Roumaine Math. Pures Appl. 50, 125-136 (2005).

    MATH  MathSciNet  Google Scholar 

  4. S. Cambanis and Y. Hu. Exact convergence rate of the Euler-Maruyama scheme, with application to sampling design. Stochastics Stochastics Rep. 59, 211-240 (1996).

    MATH  MathSciNet  Google Scholar 

  5. J. M. C. Clark and R. J. Cameron. The maximum rate of conver-gence of discrete approximations for stochastic differential equations.In: Stochastic Differential Systems (B. Grigelionis, ed.), Lect. Notes Control Inf. Sci. 25, Springer-Verlag, Berlin (1980).

    Google Scholar 

  6. J. Creutzig. Approximation of Gaussian Random Vectors in Ba-nach Spaces. Ph.D. Dissertation, Fakultät für Mathematik und Inf., Friedrich-Schiller Universität Jena (2002).

    Google Scholar 

  7. A. M. Davie and J. Gaines. Convergence of numerical schemes for the solution of parabolic partial differential equations. Math. Comp. 70, 121-134 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Dereich. High Resolution Coding of Stochastic Processes and Small Ball Probabilities. Ph.D. Dissertation, Institut für Mathematik, TU Berlin (2003).

    Google Scholar 

  9. S. Dereich. The quantization complexity of diffusion processes. Preprint, arXiv: math.PR/0411597 (2004).

    Google Scholar 

  10. S. Dereich, F. Fehringer, A. Matoussi, and M. Scheutzow. On the link between small ball probabilities and the quantization problem. J. Theoret. Probab. 16, 249-265 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Dereich, T. Müller-Gronbach, and K. Ritter. Infinite-dimensional quadrature and quantization. Preprint, arXiv: math.PR/0601240v1 (2006).

    Google Scholar 

  12. S. Dereich and M. Scheutzow. High-resolution quantization and entropy coding for fractional Brownian motion. Electron. J. Probab. 11, 700-722 (2006).

    MathSciNet  Google Scholar 

  13. A. Gardoń. The order of approximations for solutions of Itô-type stochastic differential equations with jumps. Stochastic Anal. Appl. 22,679-699 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  14. M. B. Giles. Multi-level Monte Carlo path simulation. Report NA-06/03, Oxford Univ. Computing Lab. (2006).

    Google Scholar 

  15. P. Glasserman and N. Merener. Convergence of a discretization scheme for jump-diffusion processes with state-dependent intensities. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460, 111-127 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  16. S. Graf and H. Luschgy. Foundations of Quantization for Probability Distributions, Lect. Notes in Math.  1730, Springer-Verlag, Berlin (2000).

    Google Scholar 

  17. W. Grecksch and P. E. Kloeden. Time-discretised Galerkin approx-imations of parabolic stochastic PDEs. Bull. Austr. Math. Soc. 54, 79-85 (1996).

    Article  MathSciNet  Google Scholar 

  18. I. Gyöngy and D. Nualart. Implicit scheme for stochastic parabolic par-tial differential equations driven by space-time white noise. Potential Analysis 7, 725-757 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Hairer, A. M. Stuart, and J. Voss. Analysis of SPDEs arising in path sampling. Part II: The nonlinear case. Manuscript (2006).

    Google Scholar 

  20. M. Hairer, A. M. Stuart, J. Voss, and P. Wiberg. Analysis of SPDEs arising in path sampling, Part I: The Gaussian case. Commun. Math. Sci. 3, 587-603 (2005).

    MATH  MathSciNet  Google Scholar 

  21. E. Hausenblas. Approximation for semilinear stochastic evolution equations. Potential Analysis 18, 141-186 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  22. D. J. Higham and P. E. Kloeden. Convergence and stability of implicit methods for jump-diffusion systems. Int. J. Numer. Anal. Model. 3, 125-140 (2006).

    MATH  MathSciNet  Google Scholar 

  23. N. Hofmann and T. Müller-Gronbach. On the global error of Itô-Taylor schemes for strong approximation of scalar stochastic differential equations. J. Complexity 20, 732-752 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  24. N. Hofmann and T. Müller-Gronbach. A modified Milstein scheme for approximation of stochastic delay differential equations with constant time lag. J. Comput. Appl. Math. 197, 89-121 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  25. N. Hofmann, T. Müller-Gronbach, and K. Ritter. The optimal dis-cretization of stochastic differential equations. J. Complexity 17, 117-153 (2001).

    Article  Google Scholar 

  26. N. Hofmann, T. Müller-Gronbach, and K. Ritter. Linear vs. standard information for scalar stochastic differential equations. J. Complexity 18,394-414 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  27. Y. Hu, S.-E. A. Mohammmed, and F. Yan. Discrete-time approxima-tion of stochastic delay equations: the Milstein scheme. Ann. Probab. 32,265-314 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  28. P. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations. 3rd  print., Springer-Verlag, Berlin (1999).

    Google Scholar 

  29. K. Kubilius and E. Platen. Rate of weak convergence of the Euler approximation for diffusion processes with jumps. Monte Carlo Meth. Appl. 8, 83-96 (2002).

    MATH  MathSciNet  Google Scholar 

  30. U. Küchler and E. Platen. Strong discrete time approximation of stochastic differential equations with time delay. Math. Comput. Sim-ulation 54, 189-205 (2000).

    Article  Google Scholar 

  31. M. Kwas. An optimal Monte Carlo algorithm for multivariate Feynman-Kac integrals. J. Math. Phys. 46, 103511.

    Google Scholar 

  32. M. Kwas and Y. Li. Worst case complexity of multivariate Feynman-Kac path integration. J. Complexity 19, 730-743 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  33. S. J. Lin. Stochastic analysis of fractional Brownian motions. Stochas-tics Stochastics Rep. 55, 121-140 (1995).

    MATH  Google Scholar 

  34. X. Q. Liu and C. W. Li. Weak approximation and extrapolations of stochastic differential equations with jumps. SIAM J. Numer. Anal. 37,1747-1767 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  35. H. Luschgy and G. Pagès. Functional quantization of Gaussian pro-cesses. J. Funct. Anal. 196, 486-531 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  36. H. Luschgy and G. Pagès. Sharp asymptotics of the functional quantiza-tion problem for Gaussian processes. Ann. Appl. Prob. 32, 1574-1599 (2004).

    MATH  Google Scholar 

  37. H. Luschgy and G. Pagès. Functional quantization of a class of Brow-nian diffusions: a constructive approach. Stochastic Processes Appl. 116,310-336 (2006).

    Article  MATH  Google Scholar 

  38. Y. Maghsoodi. Exact solutions and doubly efficient approximations of jump-diffusion Itô equations. Stochastic Anal. Appl. 16, 1049-1072 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  39. V. Maiorov. Average n-widths of the Wiener space in the L − ∞-norm. J. Complexity 9, 222-230 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  40. V. Maiorov and G. W. Wasilkowski. Probabilistic and average linear widths in L∞ norm with respect to r-folded Wiener measure. J. Approx. Theory 84, 31-40 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  41. G. Maruyama. Continuous Markov processes and stochastic equations. Rend. Circ. Mat. Palermo 4, 48-90 (1955).

    Article  MATH  MathSciNet  Google Scholar 

  42. P. Mathé. s-numbers in information-based complexity. J. Complexity 6,41-66 (1900).

    Article  Google Scholar 

  43. G. N. Milstein. Numerical Integration of Stochastic Differential Equa-tions. Kluwer, Dordrecht (1995).

    Google Scholar 

  44. T. Müller-Gronbach. Strong Approximation of Systems of Stochastic Differential Equations. Habilitationsschrift, TU Darmstadt (2001).

    Google Scholar 

  45. T. Müller-Gronbach. Optimal uniform approximation of systems of stochastic differential equations. Ann. Appl. Prob. 12, 664-690 (2002).

    Article  MATH  Google Scholar 

  46. T. Müller-Gronbach. Optimal pointwise approximation of SDEs based on Brownian motion at discrete points. Ann. Appl. Prob. 14, 1605-1642 (2004).

    Article  Google Scholar 

  47. T. Müller-Gronbach and K. Ritter. An implicit Euler scheme with non-uniform time discretization for heat equations with multiplicative noise. BIT 47, 393-418 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  48. T. Müller-Gronbach and K. Ritter. Lower bounds and nonuniform time discretization for approximation of stochastic heat equations. Found. Comput. Math. 7, 135-181 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  49. T. Müller-Gronbach, K. Ritter, and T. Wagner. Optimal pointwise approximation of a linear stochastic heat equation with additive space-time white noise. In S. Heinrich, A. Keller, and H. Niederreiter, editors, Monte Carlo and Quasi-Monte Carlo Methods 2006, pages 577-589. Springer-Verlag, 2007.

    Google Scholar 

  50. A. S. Nemirovsky and D. B. Yudin. Problem Complexity and Method Efficiency in Optimization. Wiley, New York (1983).

    MATH  Google Scholar 

  51. A. Neuenkirch. Optimal approximation of SDEs with additive frac-tional noise. J. Complexity 22, 459-474 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  52. A. Neuenkirch and I. Nourdin. Exact rate of convergence of some approximation schemes associated to SDEs driven by a fBm. Preprint (2006).

    Google Scholar 

  53. E. Novak. Deterministic and Stochastic Error Bounds in Numerical Analysis. Lect. Notes in Math. 1349, Springer-Verlag, Berlin (1988).

    Google Scholar 

  54. E. Novak. The real number model in numerical analysis. J. Complexity 11,57-73 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  55. D. Nualart. The Malliavin calculus and related topics. 2nd ed., Springer-Verlag, Berlin, (2006).

    MATH  Google Scholar 

  56. G. Pagès. Quadratic optimal functional quantization of stochastic processes and numerical applications. In S. Heinrich, A. Keller, and H. Niederreiter, editors, Monte Carlo and Quasi-Monte Carlo Methods 2006, pages 101-142. Springer-Verlag, 2007.

    Google Scholar 

  57. E. Platen. An introduction to numerical methods for stochastic differ-ential equations. Acta Numer. 8, 197-246 (1999).

    Article  MathSciNet  Google Scholar 

  58. G. Pagès and J. Printems. Functional quantization for numerics with an application to option pricing. Monte Carlo Meth. Appl. 11, 407-446 (2005).

    Article  MATH  Google Scholar 

  59. K. Petras and K. Ritter. On the complexity of parabolic initial value problems with variable drift. J. Complexity 22, 118-145 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  60. L. Plaskota, G. W. Wasilkowski, and H. Wozniakowski. A new algo-rithm and worst case complexity for Feynman-Kac path integration. J. Comput. Phys. 164, 335-353 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  61. K. Ritter. Average-Case Analysis of Numerical Problems. Lect. Notes in Math. 1733, Springer-Verlag, Berlin (2000).

    Google Scholar 

  62. W. Rümelin. Numerical treatment of stochastic differential equations. SIAM J. Numer. Anal. 19, 604-613 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  63. A. M. Stuart, J. Voss, and P. Wiberg. Fast communication conditional path sampling of SDEs and the Langevin MCMC method. Commun. Math. Sci. 2, 685-697 (2004).

    MATH  MathSciNet  Google Scholar 

  64. Y. Sun. Average n-width of point set in Hilbert space. Chinese Sci. Bull. 37, 1153-1157 (1992).

    MATH  MathSciNet  Google Scholar 

  65. D. Talay. Simulation of stochastic differential systems. In: Probabilistic Methods in Applied Physics (P. Krée, W. Wedig, eds.), Lect. Notes Phys. Monogr. 451, Springer-Verlag, Berlin (1995).

    Google Scholar 

  66. J. F. Traub, G. W. Wasilkowski, and H. Wozniakowski. Information-Based Complexity. Academic Press, New York (1988).

    MATH  Google Scholar 

  67. C. Tudor and M. Tudor. On approximation of solutions for stochastic delay equations. Stud. Cercet. Mat. 39, 265-274 (1987).

    MATH  MathSciNet  Google Scholar 

  68. G. W. Wasilkowski. Randomization for continuous problems. J. Com-plexity 5, 195-218 (1989).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Müller-Gronbach, T., Ritter, K. (2008). Minimal Errors for Strong and Weak Approximation of Stochastic Differential Equations. In: Keller, A., Heinrich, S., Niederreiter, H. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74496-2_4

Download citation

Publish with us

Policies and ethics