Skip to main content

Good Lattice Rules with a Composite Number of Points Based on the Product Weighted Star Discrepancy

  • Conference paper
Monte Carlo and Quasi-Monte Carlo Methods 2006

Summary

Rank-1 lattice rules based on a weighted star discrepancy with weights of a product form have been previously constructed under the assumption that the number of points is prime. Here, we extend these results to the non-prime case. We show that if the weights are summable, there exist lattice rules whose weighted star discrepancy is O(n 1+δ), for any δ > 0, with the implied constant independent of the dimension and the number of lattice points, but dependent on δ and the weights. Then we show that the generating vector of such a rule can be constructed using a component-by-component (CBC) technique. The cost of the CBC construction is analysed in the final part of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Dick. On the convergence rate of the component-by-component construction of good lattice rules. J. Complexity, 20: 493–522, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Disney. Error bounds for rank-1 lattice quadrature rules modulo composites. Monatsh. Math., 110: 89–100, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Dick, F. Pillichshammer, and B.J. Waterhouse. The construction of good extensible rank-1 lattices. Math. Comp., 2007. to appear.

    Google Scholar 

  4. F.J. Hickernell and H.S. Hong. Computing multivariate normal probabil- ities using rank-1 lattice sequences. In Proceedings of the Workshop on Scientific Computing (Hong Kong), (G.H. Golub, S.H. Lui, F.T. Luk, and R.J. Plemmons, eds.), Springer-Verlag, Singapore, pp. 209–215, 1997.

    Google Scholar 

  5. F.J. Hickernell and H. Niederreiter. The existence of good extensible rank-1 lattices. J. Complexity, 19: 286–300, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Joe. Component by component construction of rank-1 lattice rules having O(n −1(ln n)d) star discrepancy. In H. Niederreiter, editor, Monte Carlo and Quasi-Monte Carlo Methods 2002, pages 293–298. Springer, 2004.

    Google Scholar 

  7. S. Joe. Construction of good rank-1 lattice rules based on the weighted star discrepancy. In H. Niederreiter and D. Talay, editors, Monte Carlo and Quasi-Monte Carlo Methods 2004, pages 181–196. Springer, 2006.

    Google Scholar 

  8. S. Joe and I.H. Sloan. On computing the lattice rule criterion R. Math. Comp, 59: 557–568, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  9. F.Y. Kuo and S. Joe. Component-by-component construction of good lattice rules with a composite number of points. J. Complexity, 18: 943–946, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  10. F.Y. Kuo. Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted korobov and sobolev spaces. J. Complexity, 19: 301–320, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  11. G. Larcher. A best lower bound for good lattice points. Monatsh. Math., 104: 45–51, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  12. D. Nuyens and R. Cools. Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points. J. Complexity, 22: 4–28, 2005.

    Article  MathSciNet  Google Scholar 

  13. H. Niederreiter. Existence of good lattice points in the sense of Hlawka. Monatsh. Math., 86: 203–219, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  14. H. Niederreiter. Random number generation and quasi-Monte Carlo methods. SIAM, Philadelphia, 1992.

    MATH  Google Scholar 

  15. I.H. Sloan and S. Joe. Lattice methods for multiple integration. Clarendon Press, Oxford, 1994.

    MATH  Google Scholar 

  16. V. Sinescu and S. Joe. Good lattice rules based on the general weighted star discrepancy. Math. Comp., 76: 989–1004, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  17. I.H. Sloan and H. Woźniakowski. When are quasi-monte carlo algorithms efficient for high dimensional integrals? J. Complexity, 14: 1–33, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  18. S.K. Zaremba. Some applications of multidimensional integration by parts. Ann. Polon. Math., 21: 85–96, 1968.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sinescu, V., Joe, S. (2008). Good Lattice Rules with a Composite Number of Points Based on the Product Weighted Star Discrepancy. In: Keller, A., Heinrich, S., Niederreiter, H. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74496-2_39

Download citation

Publish with us

Policies and ethics