Skip to main content

Computational Engine for a Virtual Tissue Simulator

  • Conference paper
Monte Carlo and Quasi-Monte Carlo Methods 2006

We have developed a computational platform that simulates light transport in tissue in support of biomedical optics research. Although in its initial stage of development, this platform is being used to answer important questions regarding the detection of tissue changes, and the optimal design and positioning of optical probes to ‘interrogate’ the tissue best. We provide answers to such questions by applying perturbation and midway surface Monte Carlo techniques. Derivation of these methods makes rigorous use of the radiative transport equation which is essential if the methods are to provide accurate solutions for highly complex media such as biological tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh. Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis. Appl. Opt., 36(1):75–92, 1997.

    Article  Google Scholar 

  2. S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum. Analytical model to describe fluorescence spectra or normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements. J. Biomed. Opt., 9(3):511–522, 2004.

    Article  Google Scholar 

  3. T. Collier, D. Arifler, A. Malpica, M. Follen, and R. Richards-Kortum. Determination of epithelial tissue scattering coefficient using confocal microscopy. IEEE J. Sel. Top. Quantum Electron., 9(1):307–313, 2003.

    Google Scholar 

  4. T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum. Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy. Appl. Opt., 44(11):2071–2081, 2005.

    Article  Google Scholar 

  5. S. N. Cramer. Forward-adjoint Monte Carlo coupling with no statistical error propagation. Nucl. Sci. Eng., 124:398–416, 1996.

    Google Scholar 

  6. H. Fang, M. Ollero, E. Vitkin, L. M. Kimerer, P. B. Cipolloni, M. M. Zaman, S. D. Freedman, I. J. Bigio, I. Itzkan, E. B. Hanlon, and L. T. Perelman. Noninvasive sizing of subcellular organelles with light scattering spectroscopy. IEEE J. Sel. Topics Quantum Elec., 9(2):267–276, 2003.

    Article  Google Scholar 

  7. S. Feng, F. Zeng, and B. Chance. Photon migration in the presence of a single defect: a perturbation analysis. Appl. Opt., 34(19):3826–3837, 1995.

    Article  Google Scholar 

  8. C. K. Hayakawa. Perturbation Monte Carlo Methods for the Solution of Inverse Problems. PhD thesis, Claremont Graduate University, 2002.

    Google Scholar 

  9. C. K. Hayakawa and J. Spanier. Perturbation Monte Carlo methods for the solution of inverse problems. In Monte Carlo and Quasi-Monte Carlo Methods 2002, pages 227–241. Springer, 2004.

    Google Scholar 

  10. C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan. Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues. Opt. Lett., 26(17):1335–1337, 2001.

    Article  Google Scholar 

  11. C. K. Hayakawa, J. Spanier, and V. Venugopalan. Coupled forward-adjoint monte carlo simulations of radiative transport for the study of optical probe design in heterogeneous tissues. SIAM J. on Appl. Math., accepted.

    Google Scholar 

  12. Y. L. Kim, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman. Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer. IEEE J. Sel. Topics Quantum Elec., 9(2):243–256, 2003.

    Article  Google Scholar 

  13. C. J. Mann, L. Yu, C.-M. Lo, and M. K. Kim. High-resolution quantitative phase-constrast microscopy by digital holography. Opt. Exp., 13 (22):8693–8698, 2005.

    Article  Google Scholar 

  14. M. S. Patterson, S. Andersson-Engels, B. C. Wilson, and E. K. Osei. Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths. Appl. Opt., 34(1):22–30, 1995.

    Article  Google Scholar 

  15. J. Spanier and E. Gelbard. Monte Carlo Principles and Neutron Transport Problems. Addison-Wesley, 1969.

    Google Scholar 

  16. J. C. Schotland, J. C. Haselgrove, and J. S. Leigh. Photon hitting density. Appl. Opt., 32(4):448–453, 1993.

    Article  Google Scholar 

  17. I. V. Serov, T. M. John, and J. E. Hoogenboom. A new effective Monte Carlo midway coupling method in MCNP applied to a well logging problem. Appl. Radiat. Isot., 49(12):1737–1744, 1998.

    Article  Google Scholar 

  18. I. V. Serov, T. M. John, and J. E. Hoogenboom. A midway forward-adjoint coupling method for neutron and photon Monte Carlo transport. Nucl. Sci. Eng., 133:55–72, 1999.

    Google Scholar 

  19. I. Seo, J. S. You, C. K. Hayakawa, and V. Venugopalan. Perturbation and differential Monte Carlo methods for measurement of optical properties in a layered epithelial tissue model. J. Biomed. Opt., 12(1):014030, 2007.

    Article  Google Scholar 

  20. T. Ueki and J. E. Hoogenboom. Exact Monte Carlo perturbation analysis by forward-adjoint coupling in radiation transport calculations. J. Comput. Phys., 171:509–533, 2001.

    Article  MATH  Google Scholar 

  21. T. Ueki, J. E. Hoogenboom, and J. L. Kloosterman. Analysis of correlated coupling of Monte Carlo forward and adjoint histories. Nucl. Sci. Eng., 137:117–145, 2001.

    Google Scholar 

  22. M. L. Williams and W. W. Engle. The concept of spatial channel theory applied to reactor shielding analysis. Nucl. Sci. Eng., 62:92–104, 1977.

    Google Scholar 

  23. M. L. Williams. Generalized contributon response theory. Nucl. Sci. Eng., 108:355–383, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hayakawa, C., Spanier, J., Venugopalan, V. (2008). Computational Engine for a Virtual Tissue Simulator. In: Keller, A., Heinrich, S., Niederreiter, H. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74496-2_25

Download citation

Publish with us

Policies and ethics