Skip to main content

A Coding Theoretic Approach to Building Nets with Well-Equidistributed Projections

  • Conference paper
Monte Carlo and Quasi-Monte Carlo Methods 2006

Summary

Starting from coding-theoretic constructions, we build digital nets with good figures of merit, where the figure of merit takes into account the equidistribution of a preselected set of low-dimensional projections. This type of figure of merit turns out to be a better predictor than the t-value for the variance of randomized quasi-Monte Carlo (RQMC) estimators based on nets, for certain classes of integrals. Our construction method determines the most significant digits of the points by exploiting the equivalence between the desired equidistribution properties used in our criterion and the property of a related point set to be an orthogonal array, and using existing orthogonal array constructions. The least significant digits are then adjusted to improve the figure of merit. Known results on orthogonal arrays provide bounds on the best possible figure of merit that can be achieved. We present a concrete construction that belongs to the class of cyclic digital nets and we provide numerical illustrations of how it can reduce the variance of an RQMC estimator, compared with more standard constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Acworth, M. Broadie, and P. Glasserman. A comparison of some Monte Carlo and quasi-Monte Carlo techniques for option pricing. In P. Hellekalek, G. Larcher, H. Niederreiter, and P. Zinterhof, editors, Monte Carlo and Quasi-Monte Carlo Methods 1996, volume 127 of Lecture Notes in Statistics, pages 1–18. Springer-Verlag, New York, 1998.

    Google Scholar 

  2. J. Bierbrauer and Y. Edel. Construction of digital nets from BCH-codes. In P. Hellekalek, G. Larcher, H. Niederreiter, and P. Zinterhof, editors, Monte Carlo and Quasi-Monte Carlo Methods 1996, volume 127 of Lecture Notes in Statistics, pages 221–231. Springer-Verlag, New York, 1998.

    Google Scholar 

  3. J. Bierbrauer. Large caps. Journal of Geometry, 76:16–51, 2003.

    MATH  MathSciNet  Google Scholar 

  4. J. Bierbrauer. Introduction to Coding Theory. Chapman and Hall/CRC Press, Boca Raton, FL, USA, 2004.

    Google Scholar 

  5. K. A. Bush. Orthogonal arrays of index unity. Annals of Mathematical Statistics, 13:426–434, 1952.

    Article  MathSciNet  Google Scholar 

  6. J. W. P. Hirschfeld. Finite Projective Spaces of Three Dimensions. Clarendon Press, Oxford, 1985.

    MATH  Google Scholar 

  7. A. S. Hedayat, N. J. A. Sloane, and J. Stufken. Orthogonal Arrays: Theory and Applications. Springer-Verlag, New York, 1999.

    MATH  Google Scholar 

  8. J. Imai and K. S. Tan. Enhanced quasi-Monte Carlo methods with dimension reduction. In E. Yücesan, C. H. Chen, J. L. Snowdon, and J. M. Charnes, editors, Proceedings of the 2002 Winter Simulation Conference, pages 1502–1510, Piscataway, New Jersey, 2002. IEEE Press.

    Google Scholar 

  9. L. Kocis and W. J. Whiten. Computational investigations of low-discrepancy sequences. ACM Transactions on Mathematical Software, 23(2):266–294, June 1997.

    Article  MATH  Google Scholar 

  10. C. Lemieux, M. Cieslak, and K. Luttmer. RandQMC User's Guide: A Package for Randomized Quasi-Monte Carlo Methods in C, 2004. Software user's guide, available from http://www.math.uwaterloo.ca/˜clemieux/.

  11. P. L'Ecuyer. Quasi-Monte Carlo methods in finance. In R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, editors, Proceedings of the 2004 Winter Simulation Conference, Piscataway, New Jersey, 2004. IEEE Press.

    Google Scholar 

  12. P. L'Ecuyer and C. Lemieux. Quasi-Monte Carlo via linear shift-register sequences. In Proceedings of the 1999 Winter Simulation Conference, pages 632–639. IEEE Press, 1999.

    Google Scholar 

  13. P. L'Ecuyer and C. Lemieux. Variance reduction via lattice rules. Management Science, 46(9):1214–1235, 2000.

    Article  Google Scholar 

  14. C. Lemieux and P. L'Ecuyer. Selection criteria for lattice rules and other low-discrepancy point sets. Mathematics and Computers in Simulation, 55 (1–3):139–148, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  15. P. L'Ecuyer and C. Lemieux. Recent advances in randomized quasi-Monte Carlo methods. In M. Dror, P. L'Ecuyer, and F. Szidarovszky, editors, Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, pages 419–474. Kluwer Academic, Boston, 2002.

    Google Scholar 

  16. H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods, volume 63 of SIAM CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, 1992.

    Google Scholar 

  17. H. Niederreiter. Digital nets and coding theory. In K. Q. Feng, H. Niederreiter, and C. P. Xing, editors, Coding, Cryptography and Combinatorics, volume 23 of Progress in Computer Science and Applied Logic, pages 247–257. Birkhäuser, Basel, 2004.

    Google Scholar 

  18. H. Niederreiter. Constructions of (t, m, s)-nets and (t, s)-sequences. Finite Fields and Their Applications, 11:578–600, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. B. Owen. Orthogonal arrays for computer experiments, integration and visualization. Statistica Sinica, 2(2):439–452, 1992.

    MATH  MathSciNet  Google Scholar 

  20. A. B. Owen. Latin supercube sampling for very high-dimensional simulations. ACM Transactions on Modeling and Computer Simulation, 8(1):71–102, 1998.

    Article  MATH  Google Scholar 

  21. A. B. Owen. Variance with alternative scramblings of digital nets. ACM Transactions on Modeling and Computer Simulation, 13(4):363–378, 2003.

    Article  Google Scholar 

  22. F. Panneton and P. L'Ecuyer. Infinite-dimensional highly-uniform point sets defined via linear recurrences in F2w. In H. Niederreiter and D. Talay, editors, Monte Carlo and Quasi-Monte Carlo Methods 2004, pages 419–429, Berlin, 2006. Springer-Verlag.

    Chapter  Google Scholar 

  23. G. Pirsic and W. Ch. Schmid. Calculation of the quality parameter of digital nets and application to their construction. Journal of Complexity, 17(4):827–839, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  24. I. H. Sloan and S. Joe. Lattice Methods for Multiple Integration. Clarendon Press, Oxford, 1994.

    MATH  Google Scholar 

  25. W. Ch. Schmid and R. Schürer. MinT, the database for optimal (t, m, s)-net parameters. http://mint.sbg.ac.at, 2005.

  26. R. Schürer and W. Ch. Schmid. Linear programming bounds; in MinT, the database for optimal (t, m, s)-net parameters. http://mint.sbg.ac.at/desc_CBoundLP.html, version: 2006-12-20, 2006.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Edel, Y., L’Ecuyer, P. (2008). A Coding Theoretic Approach to Building Nets with Well-Equidistributed Projections. In: Keller, A., Heinrich, S., Niederreiter, H. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74496-2_18

Download citation

Publish with us

Policies and ethics