Skip to main content

Approximation of Functions Using Digital Nets

  • Conference paper
Monte Carlo and Quasi-Monte Carlo Methods 2006

Summary

In analogy to a recent paper by Kuo, Sloan, and Woźniakowski, which studied lattice rule algorithms for approximation in weighted Korobov spaces, we consider the approximation problem in a weighted Hilbert space of Walsh series. Our approximation uses a truncated Walsh series with Walsh coefficients approximated by numerical integration using digital nets. We show that digital nets (or more precisely, polynomial lattices) tailored specially for the approximation problem lead to better error bounds. The error bounds can be independent of the dimension s, or depend only polynomially on s, under certain conditions on the weights defining the function space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68:337–404, 1950.

    Article  MATH  MathSciNet  Google Scholar 

  2. L. L. Cristea, J. Dick, and F. Pillichshammer. On the mean square weighted L 2 discrepancy of randomized digital nets in prime base. J. Complexity, 22:605–629, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  3. H.E. Chrestenson. A class of generalized Walsh functions. Pacific J. Math., 5:17–31, 1955.

    MATH  MathSciNet  Google Scholar 

  4. J. Dick, P. Kritzer, F. Y. Kuo, and I. H. Sloan. Lattice-Nyström method for Fredholm integral equations of the second kind with convolution type kernels. J. Complexity, in press, doi:10.1016/j.jco.2007.03.004.

    Google Scholar 

  5. J. Dick, F. Y. Kuo, F. Pillichshammer, and I. H. Sloan. Construction algorithms for polynomial lattice rules for multivariate integration. Math.Comp., 74:1895–1921, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Dick and F. Pillichshammer. Dyadic diaphony of digital nets over ℤ2. Monatsh. Math., 145:285–299, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Dick and F. Pillichshammer. Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces. J. Complexity, 21:149–195, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Dick and F. Pillichshammer. On the mean square weighted L 2 discrepancy of randomized digital (t, m, s)-nets over ℤ2. Acta Arith., 117:371–403, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  9. F. J. Hickernell and H. Niederreiter. The existence of good extensible rank-1 lattices. J. Complexity, 19:286–300, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  10. N. M. Korobov. Number-theoretic Methods in Approximate Analysis. Moscow: Fizmatgiz, 1963.

    MATH  Google Scholar 

  11. F. Y. Kuo, I. H. Sloan, and H. Woźniakowski. Lattice rules for multivariate approximation in the worst case setting. In H. Niederreiter and D. Talay, editors, Monte Carlo and Quasi-Monte Carlo Methods 2004, pages 289–330. Berlin: Springer, 2006.

    Chapter  Google Scholar 

  12. F. Y. Kuo, I. H. Sloan, and H. Woźniakowski. Lattice rule algorithms for multivariate approximation in the average case setting. J. Complexity, in press, doi:10.1016/j.jco.2006.10.006.

    Google Scholar 

  13. G. Larcher. Digital point sets: Analysis and application. In P. Hellekalek and G. Larcher, editors, Random and Quasi-Random Point Sets, volume 138 of Lecture Notes in Statistics, pages 167–222. New York: Springer, 1998.

    Google Scholar 

  14. D. Li and F. J. Hickernell. Trigonometric spectral collocation methods on lattices.In S. Y. Cheng, C.-W. Shu, and T. Tang, editors, Recent Advances in Scientific Computing and Partial Differential Equations, volume 330 of AMS Series in Contemporary Mathematics, pages 121–132. Providence: American Mathematical Society, 2003.

    Google Scholar 

  15. G. Larcher, H. Niederreiter, and W. Ch. Schmid. Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration.Monatsh. Math., 121:231–253, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Niederreiter. Point sets and sequences with small discrepancy. Monatsh. Math., 104:273–337, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  17. H. Niederreiter. Low-discrepancy and low-dispersion sequences. J. Number Theory, 30:51–70, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  18. H. Niederreiter. Low-discrepancy point sets obtained by digital constructions over finite fields. Czechoslovak Math. J., 42:143–166, 1992.

    MATH  MathSciNet  Google Scholar 

  19. H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods, volume 63 of CBMS-NSF Series in Applied Mathematics. Philadelphia: SIAM, 1992.

    Google Scholar 

  20. H. Niederreiter. Constructions of (t, m, s)-nets and (t, s)-sequences. Finite Fields Appl., 11:578–600, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  21. E. Novak, I. H. Sloan, and H. Woźniakowski. Tractability of approximation for weighted Korobov spaces on classical and quantum computers. Found. Comput. Math., 4:121–156, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  22. G. Pirsic and W. Ch. Schmid. Calculation of the quality parameter of digital nets and application to their construction. J. Complexity, 17:827–839, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  23. I. H. Sloan and H. Woźniakowski. When are quasi-Monte Carlo algorithms efficient for high dimensional integrals?. J. Complexity, 14:1–33, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  24. I. H. Sloan and H. Woźniakowski. Tractability of multivariate integration for weighted Korobov classes. J. Complexity, 17:697–721, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  25. J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski. Information-Based Complexity. New York: Academic Press, 1988.

    MATH  Google Scholar 

  26. J. L. Walsh. A closed set of normal orthogonal functions. Amer. J. Math., 45:5–24, 1923.

    Article  MATH  MathSciNet  Google Scholar 

  27. X. Wang. Strong tractability of multivariate integration using quasi-Monte Carlo algorithms. Math. Comp., 72:823–838, 2002.

    Article  Google Scholar 

  28. G. W. Wasilkowski and H. Woźniakowski. Weighted tensor product algorithms for linear multivariate problems. J. Complexity, 15:402–447, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  29. G. W. Wasilkowski and H. Woźniakowski. On the power of standard information for weighted approximation. Found. Comput. Math., 1:417–434, 2001.

    MATH  MathSciNet  Google Scholar 

  30. X. Y. Zeng, K. T. Leung, and F. J. Hickernell. Error analysis of splines for periodic problems using lattice designs. In H. Niederreiter and D. Talay, editors, Monte Carlo and Quasi-Monte Carlo Methods 2004, pages 501–514. Berlin: Springer, 2006.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dick, J., Kritzer, P., Kuo, P. (2008). Approximation of Functions Using Digital Nets. In: Keller, A., Heinrich, S., Niederreiter, H. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74496-2_16

Download citation

Publish with us

Policies and ethics