Skip to main content

Image Synthesis by Rank-1 Lattices

  • Conference paper
Monte Carlo and Quasi-Monte Carlo Methods 2006

Summary

Considering uniform points for sampling, rank-1 lattices provide the simplest generation algorithm. Compared to classical tensor product lattices or random samples, their geometry allows for a higher sampling efficiency. These considerations result in a proof that for periodic Lipschitz continuous functions, rank-1 lattices with maximized minimum distance perform best. This result is then investigated in the context of image synthesis, where we study anti-aliasing by rank-1 lattices and using the geometry of rank-1 lattices for sensor and display layouts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Agrell, T. Eriksson, A. Vardy, and K. Zeger. Closest point search in lattices. IEEE Transactions on Information Theory, 48(8):2201–2214, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  2. I. Borosh and H. Niederreiter. Optimal multipliers for pseudo-random number generation by the linear congruential method. BIT, 23:65–74, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. Cools and A. Reztsov. Different quality indexes for lattice rules. Journal of Complexity, 13(2):235–258, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  4. Q. Du, V. Faber, and M. Gunzburger. Centroidal Voronoi tessellations: Applications and algorithms. SIAM Rev., 41(4):637–676, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  5. H. Dammertz, A. Keller, and S. Dammertz. Simulation on Rank-1 Lattices. In A. Keller, S. Heinrich, and H. Niederreiter, editors, Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, in this volume.

    Google Scholar 

  6. J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics, Principles and Practice, 2nd Edition in C. Addison-Wesley, 1996.

    Google Scholar 

  7. P. Haeberli and K. Akeley. The Accumulation Buffer: Hardware Support for High-Quality Rendering. In Computer Graphics (SIGGRAPH 90 Conference Proceedings), pages 309–318, 1990.

    Google Scholar 

  8. A. Keller. Instant Radiosity. In SIGGRAPH 97 Conference Proceedings, Annual Conference Series, pages 49–56, 1997.

    Google Scholar 

  9. A. Keller. Myths of Computer Graphics. In H. Niederreiter and D. Talay, editors, Monte Carlo and Quasi-Monte Carlo Methods 2004, pages 217–243. Springer, 2006.

    Google Scholar 

  10. A. Keller and W. Heidrich. Interleaved Sampling. In K. Myszkowski and S. Gortler, editors, Rendering Techniques 2001 (Proc. 12th Eurographics Workshop on Rendering), pages 269–276. Springer, 2001.

    Google Scholar 

  11. T. Kollig and A. Keller. Efficient Multidimensional Sampling. Computer Graphics Forum, 21(3):557–563, September 2002.

    Article  Google Scholar 

  12. D. Knuth. The Art of Computer Programming Vol. 2: Seminumerical Algorithms. Addison Wesley, 1981.

    Google Scholar 

  13. G. Larcher and F. Pillichshammer. Walsh Series Analysis of the L 2 Discrepancy of Symmetrisized Point Sets. Monatsh. Math., 132:1–18, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  14. L. Middleton and J. Sivaswamy. Hexagonal Image Processing: A Practical Approach (Advances in Pattern Recognition). Springer-Verlag, 2005.

    Google Scholar 

  15. H. Niederreiter. Dyadic fractions with small partial quotients. Monatsh. Math, 101:309–315, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. Niederreiter. Quasirandom Sampling in Computer Graphics. In Proc. 3rd Internat. Seminar on Digital Image Processing in Medicine, Remote Sensing and Visualization of Information (Riga, Latvia), pages 29–34, 1992.

    Google Scholar 

  17. H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia, 1992.

    MATH  Google Scholar 

  18. H. Niederreiter. Error bounds for quasi-Monte Carlo integration with uniform point sets. J. Comput. Appl. Math., 150:283–292, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  19. B. Segovia, J. Iehl, and B. Péroche. Non-interleaved Deferred Shading of Interleaved Sample Patterns, September 2006. Eurographics/SIG-GRAPH Workshop on Graphics Hardware ’06.

    Google Scholar 

  20. I. Sloan and S. Joe. Lattice Methods for Multiple Integration. Clarendon Press, Oxford, 1994.

    MATH  Google Scholar 

  21. M. Stark, P. Shirley, and M. Ashikhmin. Generation of stratified samples for b-spline pixel filtering. Journal of Graphics Tools, 10(1):39–48, 2005.

    Google Scholar 

  22. J. Yellot. Spectral Consequences of Photoreceptor Sampling in the Rhesus Retina. Science, 221:382–385, 1983.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dammertz, S., Keller, A. (2008). Image Synthesis by Rank-1 Lattices. In: Keller, A., Heinrich, S., Niederreiter, H. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74496-2_12

Download citation

Publish with us

Policies and ethics