Skip to main content

Large-Scale Network Dynamics in Neurocognitive Function

  • Chapter
Coordination: Neural, Behavioral and Social Dynamics

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

The study of human mental function is, without a doubt, at the edge of a new frontier thanks largely to neuroimaging (e.g., functional MRI, magneto-and electroencephalography). Access to human neurobiology can potentially provide the critical link between psychological theories of various cognitive functions and the concomitant physiology. Indeed, many psychological theories find their ultimate verification where the constructs appear to have a direct neural instantiation, yet few believe in an isomorphic relation between brain and mind. As such, there is a gap between how psychological constructs are represented, and how the operations of the nervous system fit with such representations. The fundamental challenge is captured by a quote from William James ([40] p. 28), “A science of the relations of the mind and brain must show how the elementary ingredients of the former correspond to the elementary functions of the later.” The modern neuroscientist, and particularly a cognitive neuroscientist endowed with the new insight into human neurophysiology, must determine what features of the human brain are central in translating the biological representations to mental phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aertsen A, Bonhoeffer T, Kruger J (1987) Coherent activity in neuronal populations: analysis and interpretation. In: Caianiello ER (ed) Physics of cognitive processes. World Scientific Publishing, Singapore, pp. 1–34

    Google Scholar 

  2. Averbeck BB, Latham PE, Pouget A (2006) Neural correlations, population coding and computation. Nat Rev Neurosci 7:358–366

    Article  Google Scholar 

  3. Bar M (2004) Visual objects in context. Nat Rev Neurosci 5:617–629

    Article  Google Scholar 

  4. Beck DM, Kastner S (2005) Stimulus context modulates competition in human extrastriate cortex. Nat Neurosci 8:1110–1116

    Article  Google Scholar 

  5. Berns GS, Cohen JD, Mintun MA (1997) Brain regions responsive to novelty in the absence of awareness. Science 276:1272–1275

    Article  Google Scholar 

  6. Breakspear M (2004) “Dynamic” connectivity in neural systems: theoretical and empirical considerations. Neuroinformatics 2:205–226

    Article  Google Scholar 

  7. Breakspear M, Stam CJ (2005) Dynamics of a neural system with a multiscale architecture. Philos Trans R Soc Lond B Biol Sci 360:1051–1074

    Article  Google Scholar 

  8. Breakspear M, Bullmore ET, Aquino K, Das P, Williams LM (2006) The multiscale character of evoked cortical activity. Neuroimage 30:1230–1242

    Article  Google Scholar 

  9. Bressler S (2003) Context rules. Commentary on Phillips WA & Silverstein SM, Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav Brain Sci 26:85

    Article  Google Scholar 

  10. Bressler SL (2004) Inferential constraint sets in the organization of visual expectation. Neuroinformatics 2:227–238

    Article  Google Scholar 

  11. Bressler SL, Kelso JAS (2001) Cortical coordination dynamics and cognition. Trends Cogn Sci 5:26–36

    Article  Google Scholar 

  12. Bressler S, McIntosh AR (2007) The role of neural context in large-scale neurocognitive network operations. In: Jirsa VK, McIntosh AR (eds) Handbook of Brain Connectivity. Springer, Berlin

    Google Scholar 

  13. Bressler SL, Tognoli E (2006) Operational principles of neurocognitive networks. Int J Psychophysiol 60:139–148

    Article  Google Scholar 

  14. Buchel C, Coull JT, Friston KJ (1999) The predictive value of changes in effective connectivity for human learning. Science 283:1538–1541

    Article  Google Scholar 

  15. Burgess PW, Shallice T (1996) Response suppression, initiation and strategy use following frontal lobe lesions. Neuropsychologia 34:263–272

    Article  Google Scholar 

  16. Cabeza R, Nyberg L (2000) Imaging cognition II: an empirical review of 275 PET and fMRI studies. JCNs 12:1–47

    Google Scholar 

  17. Chun MM (2000) Contextual cueing of visual attention. Trends Cogn Sci 4:170–178

    Article  Google Scholar 

  18. Clark RE, Squire LR (1998) Classical conditioning and brain systems: the role of awareness. Science 280:77–81

    Article  Google Scholar 

  19. Clark CM, Squire LR (2000) Awareness and the conditioned eyeblink response. In: Woodruff-Pak DS, Steinmetz JE (eds) Eyeblink classical conditioning Vol I: applications in humans. Kluwer Academic Publishers, Norwell, MA, pp. 229–253

    Google Scholar 

  20. Dayan P, Hinton GE, Neal RM, Zemel RS (1995) The Helmholtz machine. Neural Comput 7:889–904

    Google Scholar 

  21. Deco G, Rolls ET (2005) Attention, short-term memory, and action selection: a unifying theory. Prog Neurobiol 76:236–256

    Google Scholar 

  22. Dorris MC, Pare M, Munoz DP (2000) Immediate neural plasticity shapes motor performance. J Neurosci 20:RC52

    Google Scholar 

  23. Edeline JM, Pham P, Weinberger NM (1993) Rapid development of learninginduced receptive field plasticity in the auditory cortex. Behav Neurosci 107:539–551

    Article  Google Scholar 

  24. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  Google Scholar 

  25. Freeman WJ (2000) Mesoscopic neurodynamics: from neuron to brain. J Physiol Paris 94:303–322

    Article  Google Scholar 

  26. Freeman WJ, Holmes MD (2005) Metastability, instability, and state transition in neocortex. Neural Netw 18:497–504

    Article  MATH  Google Scholar 

  27. Friston K (1994) Functional and effective connectivity: a synthesis. HBM 2:56–78

    Article  Google Scholar 

  28. Friston KJ (1997) Transients, metastability, and neuronal dynamics. Neuroimage 5:164–171

    Article  Google Scholar 

  29. Friston KJ, Frith C, Fracowiak R (1993) Time-dependent changes in effective connectivity measured with PET. HBM 1:69–79

    Article  Google Scholar 

  30. Garraux G, McKinney C, Wu T, Kansaku K, Nolte G, Hallett M (2005) Shared brain areas but not functional connections controlling movement timing and order. J Neurosci 25:5290–5297

    Article  Google Scholar 

  31. Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233:1416–1419

    Article  Google Scholar 

  32. Haken H (1996) Principles of brain functioning: a synergetic approach to brain activity, behavior and cognition. Springer, Berlin

    MATH  Google Scholar 

  33. Hanson SJ, Matsuka T, Haxby JV (2004) Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a “face” area? Neuroimage 23:156–166

    Article  Google Scholar 

  34. Haxby JV, Grady CL, Horwitz B (1991) Two visual processing pathways in human extrastriate cortex mapped with positron emission tomography. In: Lassen NA, Ingvar DH, Raichle ME, Friberg L (eds) Brain work and mental activity (Alfred Benzon Symposium 31). Munksgaard, Copenhagen, pp. 324–333

    Google Scholar 

  35. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–2430

    Article  Google Scholar 

  36. Hepp-Reymond M, Kirkpatrick-Tanner M, Gabernet L, Qi HX, Weber B (1999) Context-dependent force coding in motor and premotor cortical areas. Exp Brain Res 128:123–133

    Article  Google Scholar 

  37. Hinton GE, Dayan P (1996) Varieties of Helmholtz machine. Neural Netw 9:1385–1403

    Article  MATH  Google Scholar 

  38. Horwitz B (2003) The elusive concept of brain connectivity. Neuroimage 19:466–470

    Article  Google Scholar 

  39. Ishai A, Ungerleider LG, Martin A, Schouten JL, Haxby JV (1999) Distributed representation of objects in the human ventral visual pathway. Proc Natl Acad Sci USA 96:9379–9384

    Article  Google Scholar 

  40. James W (1890) The principles of psychology. Dover Publications Inc, Boston, MA

    Google Scholar 

  41. Jirsa VK, Kelso JA (2000) Spatiotemporal pattern formation in neural systems with heterogeneous connection topologies. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 62:8462–8465

    Google Scholar 

  42. Kanwisher N, McDermott J, Chun M (1997) The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci 17:4302–4311

    Google Scholar 

  43. Kelso JAS (1995) Dynamic patterns: the self-organization of brain and behavior. MIT Press, Cambridge, MA

    Google Scholar 

  44. Kleist K (1935) Ueber Form und Orstsblindheit bei Verletzungen des Hinterhautlappens. Deutsch Z Nervenheilk 138:206–214

    Article  Google Scholar 

  45. Knight RT, Grabowecky MF, Scabini D (1995) Role of human prefrontal cortex in attention control. Adv Neurol 66:21–34

    Google Scholar 

  46. Kristan WB, Jr., Shaw BK (1997) Population coding and behavioral choice. Curr Opin Neurobiol 7:826–831

    Article  Google Scholar 

  47. Lenartowicz A, McIntosh AR (2005) The role of anterior cingulate cortex in working memory is shaped by functional connectivity. JCNs 17:1026–1042

    Google Scholar 

  48. McElree B (2001) Working memory and focal attention. J Exp Psychol Learn Mem Cogn 27:817–835

    Article  Google Scholar 

  49. McIntosh AR (1999) Mapping cognition to the brain through neural interactions. Memory 7:523–548

    Article  Google Scholar 

  50. McIntosh AR (2000) From location to integration: how neural interactions form the basis for human cognition. In: Tulving E (ed) Memory, consciousness, and the brain: the tallinn conference. Psychology Press, Philadelphia, PA

    Google Scholar 

  51. McIntosh AR (2004) Contexts and catalysts: a resolution of the localization and integration of function in the brain. Neuroinformatics 2:175–182

    Article  Google Scholar 

  52. McIntosh AR (2007) Mesoscale brain dynamics in memory coding and representation. In: Roediger HL, Dudai Y, Fitzpatrick S (eds) Science of memory: concepts. University Press, Oxford

    Google Scholar 

  53. McIntosh AR, Gonzalez-Lima F (1994) Structural equation modeling and its application to network analysis in functional brain imaging. HBM 2:2–22

    Article  Google Scholar 

  54. McIntosh AR, Cabeza RE, Lobaugh NJ (1998) Analysis of neural interactions explains the activation of occipital cortex by an auditory stimulus. J Neurophysiol 80:2790–2796

    Google Scholar 

  55. McIntosh AR, Rajah MN, Lobaugh NJ (1999) Interactions of prefrontal cortex related to awareness in sensory learning. Science 284:1531–1533

    Article  Google Scholar 

  56. McIntosh AR, Rajah MN, Lobaugh NJ (2003) Functional connectivity of the medial temporal lobe relates to learning and awareness. J Neurosci 23:6520–6528

    Google Scholar 

  57. Milton JG, Mackey MC (2000) Neural ensemble coding and statistical periodicity: speculations on the operation of the mind’s eye. J Physiol Paris 94:489–503

    Article  Google Scholar 

  58. O’Toole AJ, Jiang F, Abdi H, Haxby JV (2005) Partially distributed representations of objects and faces in ventral temporal cortex. J Cogn Neurosci 17:580–590

    Article  Google Scholar 

  59. Passingham RE, Stephan KE, Kotter R (2002) The anatomical basis of functional localization in the cortex. Nat Rev Neurosci 3:606–616

    Google Scholar 

  60. Pasupathy A, Connor CE (2002) Population coding of shape in area V4. Nat Neurosci 5:1332–1338

    Article  Google Scholar 

  61. Popescu IR, Frost WN (2002) Highly dissimilar behaviors mediated by a multifunctional network in the marine mollusk Tritonia diomedea. J Neurosci 22:1985–1993

    Google Scholar 

  62. Spiridon M, Kanwisher N (2002) How distributed is visual category information in human occipito-temporal cortex? An fMRI study. Neuron 35:1157–1165

    Article  Google Scholar 

  63. Sporns O, Kotter R (2004) Motifs in brain networks. PLoS Biol 2:e369

    Article  Google Scholar 

  64. Sporns O, Zwi JD (2004) The small world of the cerebral cortex. Neuroinformatics 2:145–162

    Article  Google Scholar 

  65. Stephan KE, Marshall JC, Friston KJ, Rowe JB, Ritzl A, Zilles K, Fink GR (2003) Lateralized cognitive processes and lateralized task control in the human brain. Science 301:384–386

    Article  Google Scholar 

  66. Stuss DT, Benson DF (1987) The frontal lobes and control of cognition and memory. In: Perecman E (ed) The frontal lobes revisited. The IRBN Press, New York, pp. 141–158

    Google Scholar 

  67. Tononi G (2004) An information integration theory of consciousness. BMC Neurosci 5:42.

    Article  Google Scholar 

  68. Tononi G (2005) Consciousness, information integration, and the brain. Prog Brain Res 150:109–126

    Article  Google Scholar 

  69. Tononi G, Sporns O (2003) Measuring information integration. BMC Neurosci 4:31.

    Article  Google Scholar 

  70. Tononi G, Sporns O, Edelman GM (1992) Reentry and the problem of integrating multiple cortical areas: simulation of dynamic integration in the visual system. Cereb Cortex 2: 310–335

    Article  Google Scholar 

  71. Tononi G, Sporns O, Edelman GM (1994) A measure of brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci USA 91:5033–5037

    Article  Google Scholar 

  72. Tononi G, Sporns O, Edelman GM (1999) Measures of degeneracy and redundancy in biological networks. Proc Natl Acad Sci USA 96:3257–3262

    Article  Google Scholar 

  73. Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, MA pp. 549–586

    Google Scholar 

  74. van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274:1724–1726.

    Article  Google Scholar 

  75. Wolpaw JR (1997) The complex structure of a simple memory. Trends Neurosci 20:588–594

    Article  Google Scholar 

  76. Wu JY, Cohen LB, Falk CX (1994) Neuronal activity during different behaviors in Aplysia: a distributed organization? Science 263:820–823

    Article  Google Scholar 

  77. Young MP, Yamane S (1992) Sparse population coding of faces in the inferotemporal cortex. Science 256:1327–1331

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McIntosh, A.R. (2008). Large-Scale Network Dynamics in Neurocognitive Function. In: Fuchs, A., Jirsa, V.K. (eds) Coordination: Neural, Behavioral and Social Dynamics. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74479-5_9

Download citation

Publish with us

Policies and ethics