Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 1226 Accesses

Abstract

The ability to achieve local tumor control and improved overall survival with radiation therapy is limited by the risk of unacceptable normal tissue toxicity. A number of therapeutic interventions targeting the molecular pathways responsible for the development of acute and long-term injury have been investigated in pre-clinical and clinical studies. These interventions have primarily targeted apoptosis, growth factors, and pro-inflammatory and pro-fibrogenic pathways in an attempt to prevent, mitigate, or treat radiation-induced injury. As the mechanisms underlying radiation-induced normal tissue injury are better elucidated, the identification of new potential targets and improved therapeutic interventions will allow patient-stratified dose escalation and improve long-term response rates. The following chapter outlines current target-based interventions being investigated and discusses the recent discovery of novel pathways that may be targeted in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andarawewa KL, Erickson AC, Chou WS et al. (2007a) Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta induced epithelial to mesenchymal transition. Cancer Res 67: 8662–8670

    CAS  Google Scholar 

  • Andarawewa KL, Paupert J, Pal A et al. (2007b) New rationales for using TGFbeta inhibitors in radiotherapy. Int J Radiat Biol 83: 803–811

    CAS  Google Scholar 

  • Anscher MS, Murase T, Prescott DM et al. (1994) Changes in plasma TGF beta levels during pulmonary radiotherapy as a predictor of the risk of developing radiation pneumonitis. Int J Radiat Oncol Biol Phys 30: 671–676

    PubMed  CAS  Google Scholar 

  • Anscher MS, Marks LB, Shafman TD et al. (2001) Using plasma transforming growth factor beta-1 during radiotherapy to select patients for dose escalation. J Clin Oncol 19: 3758–3765

    PubMed  CAS  Google Scholar 

  • Anscher MS, Thrasher B, Rabbani Z et al. (2006) Antitransforming growth factor-beta antibody 1D11 ameliorates normal tissue damage caused by high-dose radiation. Int J Radiat Oncol Biol Phys 65: 876–881

    PubMed  CAS  Google Scholar 

  • Anscher MS, Thrasher B, Zgonjanin L et al. (2008) Small molecular inhibitor of transforming growth factor-beta protects against development of radiation-induced lung injury. Int J Radiat Oncol Biol Phys 71: 829–837

    PubMed  CAS  Google Scholar 

  • Antonadou D, Coliarakis N, Synodinou M et al. (2001) Randomized phase III trial of radiation treatment +/− amifostine in patients with advanced-stage lung cancer. Int J Radiat Oncol Biol Phys 51: 915–922

    PubMed  CAS  Google Scholar 

  • Antonadou D, Throuvalas N, Petridis A et al. (2003) Effect of amifostine on toxicities associated with radiochemotherapy in patients with locally advanced non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 57: 402–408

    PubMed  CAS  Google Scholar 

  • Arriagada R, Le Chevalier T, Quoix E et al. (1991) ASTRO (American Society for Therapeutic Radiology and Oncology) plenary: Effect of chemotherapy on locally advanced non-small cell lung carcinoma: a randomized study of 353 patients. GETCB (Groupe d’Etude et Traitement des Cancers Bronchiques), FNCLCC (Federation Nationale des Centres de Lutte contre le Cancer) and the CEBI trialists. Int J Radiat Oncol Biol Phys 20: 1183–1190

    PubMed  CAS  Google Scholar 

  • Bai Y, Wang D, Wang L et al. (1993) The role of free radicals in the development of radiation interstitial pneumonitis. J Env Pathol Toxicol Oncol 12: 199–204

    CAS  Google Scholar 

  • Barcellos-Hoff MH (1993) Radiation-induced transforming growth factor beta and subsequent extracellular matrix reorganization in murine mammary gland. Cancer Res 53: 3880–3386

    PubMed  CAS  Google Scholar 

  • Barcellos-Hoff MH, Derynck R, Tsang ML et al. (1994) Transforming growth factor-beta activation in irradiated murine mammary gland. J Clin Invest 93: 892–899

    PubMed  CAS  Google Scholar 

  • Barcellos-Hoff MH (1996) Latency and activation in the control of TGF-beta. J Mammary Gland Biol Neoplasia 1: 353–363

    Google Scholar 

  • Barcellos-Hoff MH, Dix TA (1996) Redox-mediated activation of latent transforming growth factor-beta 1. Mol Endocrinol 10: 1077–1083

    PubMed  CAS  Google Scholar 

  • Benderitter M, Isoir M, Buard V et al. (2007) Collapse of skin antioxidant status during the subacute period of cutaneous radiation syndrome: a case report. Radiat Res 167: 43–50

    PubMed  CAS  Google Scholar 

  • Boerma M, Burton GR, Wang J et al. (2006) Comparative expression profiling in primary and immortalized endothelial cells: changes in gene expression in response to hydroxy methylglutaryl-coenzyme A reductase inhibition. Blood Coagul Fibrinolysis 17: 173–180

    PubMed  CAS  Google Scholar 

  • Bourgier C, Haydont V, Milliat F et al. (2005) Inhibition of Rho kinase modulates radiation induced fibrogenic phenotype in intestinal smooth muscle cells through alteration of the cytoskeleton and connective tissue growth factor expression. Gut 54: 336–343

    PubMed  CAS  Google Scholar 

  • Brach MA, Hass R, Sherman ML et al. (1991) Ionizing radiation induces expression and binding activity of the nuclear factor kappa B. J Clin Invest 88: 691–695

    PubMed  CAS  Google Scholar 

  • Breuer R, Tochner Z, Conner MW et al. (1992) Superoxide dismutase inhibits radiation-induced lung injury in hamsters. Lung 170: 19–29

    PubMed  CAS  Google Scholar 

  • Brizel DM, Wasserman TH, Henke M et al. (2000) Phase III randomized trial of amifostine as a radioprotector in head and neck cancer. J Clin Oncol 18: 3339–3345

    PubMed  CAS  Google Scholar 

  • Brizel DM (ed):(2005) Strategies for protecting normal tissue in the treatment of head and neck cancer. In: Adelstein DJ, ed: Squamous Cell Head and Neck Cancer Recent Clinical Progress and Prospects for the Future. Totowa, NJ, Humana Press, pp 228

    Google Scholar 

  • Brizel DM (2007) Pharmacologic approaches to radiation protection. J Clin Oncol 25: 4084–4089

    PubMed  CAS  Google Scholar 

  • Brizel DM, Murphy BA, Rosenthal DI et al. (2008) Phase II study of palifermin and concurrent chemoradiation in head and neck squamous cell carcinoma. J Clin Oncol 26: 2489–2496

    PubMed  CAS  Google Scholar 

  • Brush J, Lipnick SL, Phillips T et al. (2007) Molecular mechanisms of late normal tissue injury. Semin Radiat Oncol 17: 121–130

    PubMed  Google Scholar 

  • Burdelya LG, Krivokrysenko VI, Tallant TC et al. (2008) An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 320: 226–230

    PubMed  CAS  Google Scholar 

  • Chen L, Brizel DM, Rabbani ZN et al. (2004) The protective effect of recombinant human keratinocyte growth factor on radiation-induced pulmonary toxicity in rats. Int J Radiat Oncol Biol Phys 60: 1520–1529

    PubMed  CAS  Google Scholar 

  • Cohen EP, Fish BL, and Moulder JE (1997) Successful brief captopril treatment in experimental radiation nephropathy. J Lab Clin Med 129: 536–547

    PubMed  CAS  Google Scholar 

  • Cohen EP, Irving AA, Drobyski WR et al. (2008) Captopril to mitigate chronic renal failure after hematopoietic stem cell transplantation: a randomized controlled trial. Int J Radiat Oncol Biol Phys 70: 1546–1551

    PubMed  Google Scholar 

  • Cox JD, Azarnia N, Byhardt RW et al. (1990) A randomized phase I/II trial of hyperfractionated radiation therapy with total doses of 60.0 Gy to 79.2 Gy: possible survival benefit with greater than or equal to 69.6 Gy in favorable patients with Radiation Therapy Oncology Group stage III non-small-cell lung carcinoma: report of Radiation Therapy Oncology Group 83–11. J Clin Oncol 8: 1543–1555

    PubMed  CAS  Google Scholar 

  • Cuzzocrea S, Pisano B, Dugo L et al. (2004) Superoxide-related signaling cascade mediates nuclear factor-kB activation in acute inflammation. Antioxidants and Redox Signaling 6: 699–704

    PubMed  CAS  Google Scholar 

  • Delanian S (1998) Striking regression of radiation-induced fibrosis by a combination of pentoxifylline and tocopherol. Br J Radiol 71: 892–894

    PubMed  CAS  Google Scholar 

  • Delanian S, Balla-Mekias S, Lefaix JL (1999) Striking regression of chronic radiotherapy damage in a clinical trial of combined pentoxifylline and tocopherol. J Clin Oncol 17: 3283–3290

    PubMed  CAS  Google Scholar 

  • Delanian S, Martin M, Bravard A et al. (2001) Cu/Zn superoxide dismutase modulates phenotypic changes in cultured fibroblasts from human skin with chronic radiotherapy damage. Radiother Oncol 58: 325–331

    PubMed  CAS  Google Scholar 

  • Delanian S, Porcher R, Balla-Mekias S et al. (2003) Randomized, placebo-controlled trial of combined pentoxifylline and tocopherol for regression of superficial radiation-induced fibrosis. J Clin Oncol 21: 2545–2550

    PubMed  CAS  Google Scholar 

  • Delanian S, Porcher R, Rudant J et al. (2005) Kinetics of response to long-term treatment combining pentoxifylline and tocopherol in patients with superficial radiation-induced fibrosis. J Clin Oncol 23: 8570–8579

    PubMed  Google Scholar 

  • Delanian S, Lefaix JL (2007) Current management for late normal tissue injury: radiation-induced fibrosis and necrosis. Semin Radiat Oncol 17: 99–107

    PubMed  Google Scholar 

  • Dewhirst MW, Gustafson C, Gross JF et al. (1987) Temporal effects of 5.0 Gy radiation in healing subcutaneous microvasculature of a dorsal flap window chamber. Radiat Res 112: 581–591

    PubMed  CAS  Google Scholar 

  • Dhar A, Young MR, Colburn NH (2002) The role of AP-1, NF-kB and ROS/NOS in skin carcinogenesis: The JB-6 model is predictive. Mol Cell Biochem 234/235: 185–193

    PubMed  Google Scholar 

  • Dorr W, Noack R, Spekl K et al. (2001) Modification of oral mucositis by keratinocyte growth factor: single radiation exposure. Int J Radiat Biol 77: 341–347

    PubMed  CAS  Google Scholar 

  • Dorr W, Spekl K, Farrell CL (2002) The effect of keratinocyte growth factor on healing of manifest radiation ulcers in mouse tongue epithelium. Cell Prolif 35 Suppl 1: 86–92

    Google Scholar 

  • Dorr W, Bassler S, Reichel S et al. (2005a) Reduction of radiochemotherapy-induced early oral mucositis by recombinant human keratinocyte growth factor (palifermin): experimental studies in mice. Int J Radiat Oncol Biol Phys 62: 881–887

    Google Scholar 

  • Dorr W, Heider K, Spekl K (2005b) Reduction of oral mucositis by palifermin (rHuKGF): dose-effect of rHuKGF. Int J Radiat Biol 81: 557–565

    Google Scholar 

  • Dorr W, Reichel S, Spekl K (2005c) Effects of keratinocyte growth factor (palifermin) administration protocols on oral mucositis (mouse) induced by fractionated irradiation. Radiother Oncol 75: 99–105

    Google Scholar 

  • Dosoretz DE, Galmarini D, Rubenstein JH et al. (1993) Local control in medically inoperable lung cancer: an analysis of its importance in outcome and factors determining the probability of tumor eradication. Int J Radiat Oncol Biol Phys 27: 507–516

    PubMed  CAS  Google Scholar 

  • Ehrhart EJ, Segarini P, Tsang ML et al. (1997) Latent transforming growth factor beta1 activation in situ: quantitative and functional evidence after low-dose gamma-irradiation. Faseb J 11: 991–1002

    PubMed  CAS  Google Scholar 

  • Emami B, Lyman J, Brown A et al. (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21: 109–122

    PubMed  CAS  Google Scholar 

  • Epperly MW, Travis EL, Sikora C et al. (1999) Manganese [correction of Magnesium] superoxide dismutase (MnSOD) plasmid/liposome pulmonary radioprotective gene therapy: modulation of irradiation-induced mRNA for IL-I, TNF-alpha, and TGF-beta correlates with delay of organizing alveolitis/fibrosis. Biol Blood Marrow Transplant 5: 204–214

    PubMed  CAS  Google Scholar 

  • Epperly MW, Defilippi S, Sikora C et al. (2000a) Intratracheal injection of manganese superoxide dismutase (MnSOD) plasmid/liposomes protects normal lung but not orthotopic tumors from irradiation. Gene Ther 7: 1011–1018

    CAS  Google Scholar 

  • Epperly MW, Epstein CJ, Travis EL et al. (2000b) Decreased pulmonary radiation resistance of manganese superoxide dismutase (MnSOD)-deficient mice is corrected by human manganese superoxide dismutase-Plasmid/Liposome (SOD2-PL) intratracheal gene therapy. Radiat Res 154: 365–374

    CAS  Google Scholar 

  • Epperly MW, Defilippi S, Sikora C et al. (2002a) Radioprotection of lung and esophagus by overexpression of the human manganese superoxide dismutase transgene. Mil Med 167: 71–73

    Google Scholar 

  • Epperly MW, Sikora CA, DeFilippi SJ et al. (2002b) Manganese superoxide dismutase (SOD2) inhibits radiation-induced apoptosis by stabilization of the mitochondrial membrane. Radiat Res 157: 568–577

    CAS  Google Scholar 

  • Epperly MW, Sikora CA, DeFilippi SJ et al. (2002c) Pulmonary irradiation-induced expression of VCAM-I and ICAM-I is decreased by manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) gene therapy. Biol Blood Marrow Transplant 8: 175–187

    CAS  Google Scholar 

  • Epperly MW, Gretton JE, Sikora CA et al. (2003) Mitochondrial localization of superoxide dismutase is required for decreasing radiation-induced cellular damage. Radiat Res 160: 568–578

    PubMed  CAS  Google Scholar 

  • Epperly MW, Carpenter M, Agarwal A et al. (2004) Intraoral manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) radioprotective gene therapy decreases ionizing irradiation-induced murine mucosal cell cycling and apoptosis. In Vivo 18: 401–410

    PubMed  CAS  Google Scholar 

  • Erkal HS, Batcioglu K, Serin M et al. (2006) The evaluation of the oxidant injury as a function of time following brain irradiation in a rat model. Neurochem Res 31: 1271–1277

    PubMed  CAS  Google Scholar 

  • Esco R, Valencia J, Coronel P et al. (2004) Efficacy of orgotein in prevention of late side effects of pelvic irradiation: a randomized study. Int J Radiat Oncol Biol Phys 60: 1211–1219

    PubMed  CAS  Google Scholar 

  • Farrell CL, Bready JV, Rex KL et al. (1998) Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality. Cancer Res 58: 933–939

    PubMed  CAS  Google Scholar 

  • Fedorocko P, Egyed A, Vacek A (2002) Irradiation induces increased production of haemopoietic and proinflammatory cytokines in the mouse lung. Int J Radiat Biol 78: 305–313

    PubMed  CAS  Google Scholar 

  • Fehrenbach H, Kasper M, Tschernig T et al. (1999) Keratinocyte growth factor-induced hyperplasia of rat alveolar type II cells in vivo is resolved by differentiation into type I cells and by apoptosis. Eur Respir J 14: 534–544

    PubMed  CAS  Google Scholar 

  • Fehrenbach H, Kasper M, Koslowski R et al. (2000) Alveolar epithelial type II cell apoptosis in vivo during resolution of keratinocyte growth factor-induced hyperplasia in the rat. Histochem Cell Biol 114: 49–61

    PubMed  CAS  Google Scholar 

  • Fehrenbach H, Fehrenbach A, Pan T et al. (2002) Keratinocyte growth factor-induced proliferation of rat airway epithelium is restricted to Clara cells in vivo. Eur Respir J 20: 1185–1197

    PubMed  CAS  Google Scholar 

  • Flanders KC (2004) Smad3 as a mediator of the fibrotic response. Int J Exp Pathol 85: 47–64

    PubMed  CAS  Google Scholar 

  • Fleckenstein K, Zgonjanin L, Chen L et al. (2007a) Temporal onset of hypoxia and oxidative stress after pulmonary irradiation. Int J Radiat Oncol Biol Physics 68: 196–204

    CAS  Google Scholar 

  • Fleckenstein K, Zgonjanin L, Chen L et al. (2007b) Temporal onset of hypoxia and oxidative stress after pulmonary irradiation. Int J Radiat Oncol Biol Phys 68: 196–204

    CAS  Google Scholar 

  • Forrester JS, Libby P (2007) The inflammation hypothesis and its potential relevance to statin therapy. Am J Cardiol 99: 732–738

    PubMed  CAS  Google Scholar 

  • Francois S, Bensidhoum M, Mouiseddine M et al. (2006) Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells 24: 1020–1029

    PubMed  Google Scholar 

  • Garg AK, Mai WY, McGary JE et al. (2006) Radiation proctopathy in the treatment of prostate cancer. Int J Radiat Oncol Biol Phys 66: 1294–1305

    PubMed  Google Scholar 

  • Gaugler MH, Vereycken-Holler V, Squiban C et al. (2005) Pravastatin limits endothelial activation after irradiation and decreases the resulting inflammatory and thrombotic responses. Radiat Res 163: 479–487

    PubMed  CAS  Google Scholar 

  • Gauter-Fleckenstein B, Fleckenstein K, Owzar K et al. (2007) Comparison of two Mn porphyrin-based mimics of superoxide dismutase in pulmonary radioprotection. Free Radic Biol Med 44: 982–989

    PubMed  Google Scholar 

  • Guo HL, Wolfe D, Epperly MW et al. (2003) Gene transfer of human manganese superoxide dismutase protects small intestinal villi from radiation injury. J Gastrointest Surg 7: 229–235; discussion 235–236

    Google Scholar 

  • Haddad P, Kalaghchi B, Amouzegar-Hashemi F (2005) Pentoxifylline and vitamin E combination for superficial radiation-induced fibrosis: a phase II clinical trial. Radiother Oncol 77: 324–326

    PubMed  CAS  Google Scholar 

  • Hallahan DE, Geng L, Shyr Y (2002) Effects of intercellular adhesion molecule 1 (ICAM-1) null mutation on radiation-induced pulmonary fibrosis and respiratory insufficiency in mice. J Natl Cancer Inst 94: 733–741

    PubMed  CAS  Google Scholar 

  • Hauer-Jensen M, Kong FM, Fink LM et al. (1999) Circulating thrombomodulin during radiation therapy of lung cancer. Radiat Oncol Invest 7: 238–242

    CAS  Google Scholar 

  • Haydont V, Mathe D, Bourgier C et al. (2005) Induction of CTGF by TGF-beta1 in normal and radiation enteritis human smooth muscle cells: Smad/Rho balance and therapeutic perspectives. Radiother Oncol 76: 219–225

    PubMed  CAS  Google Scholar 

  • Haydont V, Bourgier C, Pocard M et al. (2007a) Pravastatin Inhibits the Rho/CCN2/extracellular matrix cascade in human fibrosis explants and improves radiation-induced intestinal fibrosis in rats. Clin Cancer Res 13: 5331–5340

    CAS  Google Scholar 

  • Haydont V, Bourgier C, Vozenin-Brotons MC (2007b) Rho/ROCK pathway as a molecular target for modulation of intestinal radiation-induced toxicity. Br J Radiol 80 Spec No 1: S32–40

    Google Scholar 

  • Haydont V, Gilliot O, Rivera S et al. (2007c) Successful mitigation of delayed intestinal radiation injury using pravastatin is not associated with acute injury improvement or tumor protection. Int J Radiat Oncol Biol Phys 68: 1471–1482

    CAS  Google Scholar 

  • Hong JH, Chiang CS, Campbell IL et al. (1995) Induction of acute phase gene expression by brain irradiation. Int J Radiat Oncol Biol Phys 33: 619–626

    PubMed  CAS  Google Scholar 

  • Hong JH, Jung SM, Tsao TC et al. (2003) Bronchoalveolar lavage and interstitial cells have different roles in radiation-induced lung injury. Int J Radiat Biol 79: 159–167

    PubMed  CAS  Google Scholar 

  • Huang M, Sharma S, Zhu LX et al. (2002) IL-7 inhibits fibroblast TGF-beta production and signaling in pulmonary fibrosis. J Clin Invest 109: 931–937

    PubMed  CAS  Google Scholar 

  • Jaal J, Dorr W (2007) Effect of recombinant human keratinocyte growth factor (rHuKGF, Palifermin) on radiation-induced mouse urinary bladder dysfunction. Int J Radiat Oncol Biol Phys 69: 528–533

    PubMed  CAS  Google Scholar 

  • Jackson IL, Chen L, Batinic-Haberle I et al. (2007) Superoxide dismutase mimetic reduces hypoxia-induced O2*-, TGF-beta, and VEGF production by macrophages. Free Radic Res 41: 8–14

    PubMed  CAS  Google Scholar 

  • Jemal A, Murray T, Ward E et al. (2005) Cancer statistics, 2005. CA Cancer J Clin 55: 10–30

    PubMed  Google Scholar 

  • Jobling MF, Mott JD, Finnegan MT et al. (2006) Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species. Radiat Res 166: 839–848

    PubMed  CAS  Google Scholar 

  • Johnston CJ, Piedboeuf B, Baggs R et al. (1995) Differences in correlation of mRNA gene expression in mice sensitive and resistant to radiation-induced pulmonary fibrosis. Radiat Res 142: 197–203

    PubMed  CAS  Google Scholar 

  • Keall P, Vedam S, George R et al. (2006) The clinical implementation of respiratory-gated intensity-modulated radiotherapy. Med Dosim 31: 152–162

    PubMed  Google Scholar 

  • Khan MA, Van Dyk J, Yeung IW et al. (2003) Partial volume rat lung irradiation; assessment of early DNA damage in different lung regions and effect of radical scavengers. Radiother Oncol 66: 95–102

    PubMed  Google Scholar 

  • Kim JH, Brown SL, Kolozsvary A et al. (2004) Modification of radiation injury by ramipril, inhibitor of angiotensin-converting enzyme, on optic neuropathy in the rat. Radiat Res 161: 137–142

    PubMed  CAS  Google Scholar 

  • Koh WJ, Stelzer KJ, Peterson LM et al. (1995) Effect of pentoxifylline on radiation-induced lung and skin toxicity in rats. Int J Radiat Oncol Biol Phys 31: 71–77

    PubMed  CAS  Google Scholar 

  • Komaki R, Lee JS, Milas L et al. (2004) Effects of amifostine on acute toxicity from concurrent chemotherapy and radiotherapy for inoperable non-small-cell lung cancer: report of a randomized comparative trial. Int J Radiat Oncol Biol Phys 58: 1369–1377

    PubMed  CAS  Google Scholar 

  • Koukourakis MI, Yannakakis D (2001) High dose daily amifostine and hypofractionated intensively accelerated radiotherapy for locally advanced breast cancer. A phase I/II study and report on early and late sequellae. Anticancer Res 21: 2973–2978

    PubMed  CAS  Google Scholar 

  • Lefaix JL, Delanian S, Leplat JJ et al. (1996) Successful treatment of radiation-induced fibrosis using Cu/Zn-SOD and Mn-SOD: an experimental study. Int J Radiat Oncol Biol Phys 35: 305–312

    PubMed  CAS  Google Scholar 

  • Lefaix JL, Delanian S, Vozenin MC et al. (1999) Striking regression of subcutaneous fibrosis induced by high doses of gamma rays using a combination of pentoxifylline and alpha-tocopherol: an experimental study. Int J Radiat Oncol Biol Phys 43: 839–847

    PubMed  CAS  Google Scholar 

  • Letur-Konirsch H, Guis F, Delanian S (2002) Uterine restoration by radiation sequelae regression with combined pentoxifylline-tocopherol: a phase II study. Fertil Steril 77: 1219–1226

    PubMed  Google Scholar 

  • Li YQ, Chen P, Haimovitz-Friedman A et al. (2003) Endothelial apoptosis initiates acute blood-brain barrier disruption after ionizing radiation. Cancer Res 63: 5950–5956

    PubMed  CAS  Google Scholar 

  • Lombaert IM, Wierenga PK, Kok T et al. (2006) Mobilization of bone marrow stem cells by granulocyte colony-stimulating factor ameliorates radiation-induced damage to salivary glands. Clin Cancer Res 12: 1804–1812

    PubMed  CAS  Google Scholar 

  • Martin M, Lefaix J, Delanian S (2000) TGF-beta1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys 47: 277–290

    PubMed  CAS  Google Scholar 

  • Matej R, Housa D, Pouckova P et al. (2007) Radiation-induced production of PAR-1 and TGF-beta 1 mRNA in lung of C57Bl6 and C3H murine strains and influence of pharmacoprophylaxis by ACE inhibitors. Pathol Res Pract 203: 107–114

    PubMed  CAS  Google Scholar 

  • McBride WH (1995) Cytokine cascades in late normal tissue radiation responses. Int J Radiat Oncol Biol Phys 33: 233–234

    PubMed  CAS  Google Scholar 

  • Michalowski A (1984) A critical appraisal of clonogenic survival assays in the evaluation of radiation damage to normal tissues. Radiother Oncol 1: 241–246

    PubMed  CAS  Google Scholar 

  • Mikkelsen RB, Wardman P (2003) Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 22: 5734–5754

    PubMed  CAS  Google Scholar 

  • Milano MT, Constine LS, Okunieff P (2007) Normal tissue tolerance dose metrics for radiation therapy of major organs. Semin Radiat Oncol 17: 131–140

    PubMed  Google Scholar 

  • Misirlioglu CH, Demirkasimoglu T, Kucukplakci B et al. (2007) Pentoxifylline and alpha-tocopherol in prevention of radiation-induced lung toxicity in patients with lung cancer. Med Oncol 24: 308–311

    PubMed  CAS  Google Scholar 

  • Moeller BJ, Cao Y, Li CY et al. (2004) Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: Role of reoxygenation, free radicals, and stress granules. Cancer Cell 5: 429–441

    PubMed  CAS  Google Scholar 

  • Molteni A, Moulder JE, Cohen EF et al. (2000) Control of radiation-induced pneumopathy and lung fibrosis by angiotensin-converting enzyme inhibitors and an angiotensin II type 1 receptor blocker. Int J Radiat Biol 76: 523–532

    PubMed  CAS  Google Scholar 

  • Molteni A, Wolfe LF, Ward WF et al. (2007) Effect of an angiotensin II receptor blocker and two angiotensin converting enzyme inhibitors on transforming growth factor-beta (TGF-beta) and alpha-actomyosin (alpha SMA), important mediators of radiation-induced pneumopathy and lung fibrosis. Curr Pharm Des 13: 1307–1316

    PubMed  CAS  Google Scholar 

  • Morikawa S, Takabe W, Mataki C et al. (2002) The effect of statins on mRNA levels of genes related to inflammation, coagulation, and vascular constriction in HUVEC. Human umbilical vein endothelial cells. J Atheroscler Thromb 9: 178–183

    PubMed  CAS  Google Scholar 

  • Mouiseddine M, Francois S, Semont A et al. (2007) Human mesenchymal stem cells home specifically to radiation-injured tissues in a non-obese diabetes/severe combined immunodeficiency mouse model. Br J Radiol 80 Spec No 1: S49–55

    Google Scholar 

  • Moulder JE, Fish BL, Cohen EP (1993) Treatment of radiation nephropathy with ACE inhibitors. Int J Radiat Oncol Biol Phys 27: 93–99

    PubMed  CAS  Google Scholar 

  • Moulder JE, Fish BL, Cohen EP et al. (1996) Angiotensin II receptor antagonists in the prevention of radiation nephropathy. Radiat Res 146: 106–110

    PubMed  CAS  Google Scholar 

  • Moulder JE, Fish BL (1997a) Angiotensin converting enzyme inhibitor captopril does not prevent acute gastrointestinal radiation damage in the rat. Radiat Oncol Investig 5: 50–53

    CAS  Google Scholar 

  • Moulder JE, Fish BL, Cohen EP (1997b) Noncontinuous use of angiotensin converting enzyme inhibitors in the treatment of experimental bone marrow transplant nephropathy. Bone Marrow Transplant 19: 729–735

    CAS  Google Scholar 

  • Moulder JE, Fish BL, Cohen EP (1998a) Radiation nephropathy is treatable with an angiotensin converting enzyme inhibitor or an angiotensin II type-1 (AT1) receptor antagonist. Radiother Oncol 46: 307–315

    CAS  Google Scholar 

  • Moulder JE, Fish BL, Cohen EP (1998b) Angiotensin II receptor antagonists in the treatment and prevention of radiation nephropathy. Int J Radiat Biol 73: 415–421

    CAS  Google Scholar 

  • Moulder JE, Fish BL, Cohen EP (1998c) Brief pharmacological intervention in experimental radiation nephropathy. Radiat Res 150: 535–541

    CAS  Google Scholar 

  • Moulder JE, Fish BL, Cohen EP (2002) Dietary sodium modification and experimental radiation nephropathy. Int J Radiat Biol 78: 903–911

    PubMed  CAS  Google Scholar 

  • Moulder JE (2003) Pharmacological intervention to prevent or ameliorate chronic radiation injuries. Semin Radiat Oncol 13: 73–84

    PubMed  Google Scholar 

  • Moulder JE, Fish BL, Cohen EP (2003) ACE inhibitors and AII receptor antagonists in the treatment and prevention of bone marrow transplant nephropathy. Curr Pharm Des 9: 737–749

    PubMed  CAS  Google Scholar 

  • Moulder JE, Cohen EP (2007a) Future strategies for mitigation and treatment of chronic radiation-induced normal tissue injury. Semin Radiat Oncol 17: 141–148

    Google Scholar 

  • Moulder JE, Fish BL, Cohen EP (2007b) Treatment of radiation nephropathy with ACE inhibitors and AII type-1 and type-2 receptor antagonists. Curr Pharm Des 13: 1317–1325

    CAS  Google Scholar 

  • Movsas B, Scott C, Langer C et al. (2005) Randomized trial of amifostine in locally advanced non-small-cell lung cancer patients receiving chemotherapy and hyperfractionated radiation: radiation therapy oncology group trial 98-01. J Clin Oncol 23: 2145–2154

    PubMed  CAS  Google Scholar 

  • Nishioka A, Ogawa Y, Mima T et al. (2004) Histopathologic amelioration of fibroproliferative change in rat irradiated lung using soluble transforming growth factor-beta (TGF-beta) receptor mediated by adenoviral vector. Int J Radiat Oncol Biol Phys 58: 1235–1241

    PubMed  CAS  Google Scholar 

  • Nubel T, Damrot J, Roos WP et al. (2006) Lovastatin protects human endothelial cells from killing by ionizing radiation without impairing induction and repair of DNA double-strand breaks. Clin Cancer Res 12: 933–939

    PubMed  Google Scholar 

  • Okunieff P, Augustine E, Hicks JE et al. (2004) Pentoxifylline in the treatment of radiation-induced fibrosis. J Clin Oncol 22: 2207–2213

    PubMed  CAS  Google Scholar 

  • Ozturk B, Egehan I, Atavci S et al. (2004) Pentoxifylline in prevention of radiation-induced lung toxicity in patients with breast and lung cancer: a double-blind randomized trial. Int J Radiat Oncol Biol Phys 58: 213–219

    PubMed  CAS  Google Scholar 

  • Paris F, Fuks Z, Kang A et al. (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293: 293–297

    PubMed  CAS  Google Scholar 

  • Park EM, Ramnath N, Yang GY et al. (2007) High superoxide dismutase and low glutathione peroxidase activities in red blood cells predict susceptibility of lung cancer patients to radiation pneumonitis. Free Radic Biol Med 42: 280–287

    PubMed  CAS  Google Scholar 

  • Park KW, Hwang KK, Cho HJ et al. (2008a) Simvastatin enhances endothelial differentiation of peripheral blood mononuclear cells in hypercholesterolemic patients and induces pro-angiogenic cytokine IL-8 secretion from monocytes. Clin Chim Acta 388: 156–166

    CAS  Google Scholar 

  • Park SY, Lee JS, Ko YJ et al. (2008b) Inhibitory effect of simvastatin on the TNF-alpha- and angiotensin II-induced monocyte adhesion to endothelial cells is mediated through the suppression of geranylgeranyl isoprenoid-dependent ROS generation. Arch Pharm Res 31: 195–204

    CAS  Google Scholar 

  • Pena LA, Fuks Z, Kolesnick RN (2000) Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res 60: 321–327

    PubMed  CAS  Google Scholar 

  • Perez-Guerrero C, Alvarez de Sotomayor M, Jimenez L et al. (2003) Effects of simvastatin on endothelial function after chronic inhibition of nitric oxide synthase by L-NAME. J Cardiovasc Pharmacol 42: 204–210

    PubMed  CAS  Google Scholar 

  • Perez CA, Bauer M, Edelstein S et al. (1986) Impact of tumor control on survival in carcinoma of the lung treated with irradiation. Int J Radiat Oncol Biol Phys 12: 539–547

    PubMed  CAS  Google Scholar 

  • Peter Y, Rotman G, Lotem J et al. (2001) Elevated Cu/Zn-SOD exacerbates radiation sensitivity and hematopoietic abnormalities of Atm-deficient mice. Embo J 20: 1538–1546

    PubMed  CAS  Google Scholar 

  • Phan TP, Crane CH, Janjan NA et al. (2001) WR-2721 reduces intestinal toxicity from concurrent gemcitabine and radiation treatment. Int J Pancreatol 29: 19–23

    PubMed  CAS  Google Scholar 

  • Rabbani ZN, Anscher MS, Zhang X et al. (2003) Soluble TGF beta type II receptor gene therapy ameliorates acute radiation-induced pulmonary injury in rats. Int J Radiat Oncol Biol Phys 57: 563–572

    PubMed  CAS  Google Scholar 

  • Rabbani ZN, Anscher MS, Folz RJ et al. (2005) Overexpression of extracellular superoxide dismutase reduces acute radiation induced lung toxicity. BMC Cancer 5: 59

    PubMed  Google Scholar 

  • Rabbani ZN, Batinic-Haberle I, Anscher MS et al. (2007a) Long-term administration of a small molecular weight catalytic metalloporphyrin antioxidant, AEOL 10150, protects lungs from radiation-induced injury. Int J Radiat Oncol Biol Phys 67: 573–580

    CAS  Google Scholar 

  • Rabbani ZN, Batinic-Haberle I, Anscher MS et al. (2007b) Long-term administration of a small molecular weight catalytic metalloporphyrin antioxidant, AEOL 10150, protects lungs from radiation-induced injury. Int J Radiat Oncol Biol Physics 67: 573–580

    CAS  Google Scholar 

  • Rabbani ZN, Salahuddin FK, Yarmolenko P et al. (2007c) Low molecular weight catalytic metalloporphyrin antioxidant AEOL 10150 protects lungs from fractionated radiation. Free Radic Res 41: 1273–1282

    CAS  Google Scholar 

  • Radtke ML, Kolesar JM (2005) Palifermin (Kepivance) for the treatment of oral mucositis in patients with hematologic malignancies requiring hematopoietic stem cell support. J Oncol Pharm Pract 11: 121–125

    PubMed  CAS  Google Scholar 

  • Rikitake Y, Kawashima S, Takeshita S et al. (2001) Anti-oxidative properties of fluvastatin, an HMG-CoA reductase inhibitor, contribute to prevention of atherosclerosis in cholesterol-fed rabbits. Atherosclerosis 154: 87–96

    PubMed  CAS  Google Scholar 

  • Riley PA (1994) Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 65: 27–33

    PubMed  CAS  Google Scholar 

  • Robbins ME, Diz DI (2006) Pathogenic role of the renin-angiotensin system in modulating radiation-induced late effects. Int J Radiat Oncol Biol Phys 64: 6–12

    PubMed  CAS  Google Scholar 

  • Roberts AB (1999) TGF-beta signaling from receptors to the nucleus. Microbes Infect 1: 1265–1273

    PubMed  CAS  Google Scholar 

  • Robertson JM, Ten Haken RK, Hazuka MB et al. (1997) Dose escalation for non-small cell lung cancer using conformal radiation therapy. Int J Radiat Oncol Biol Phys 37: 1079–1085

    PubMed  CAS  Google Scholar 

  • Rodemann H, Blaese M (2007a) Responses of normal cells to ionizing radiation. Semin Radiat Oncol (in press)

    Google Scholar 

  • Rodemann HP, Blaese MA (2007b) Responses of normal cells to ionizing radiation. Semin Radiat Oncol 17: 81–88

    Google Scholar 

  • Rosenman JG, Halle JS, Socinski MA et al. (2002) High-dose conformal radiotherapy for treatment of stage IIIA/IIIB non-small-cell lung cancer: technical issues and results of a phase I/II trial. Int J Radiat Oncol Biol Phys 54: 348–356

    PubMed  Google Scholar 

  • Rosenson RS (2001) Pluripotential mechanisms of cardioprotection with HMG-CoA reductase inhibitor therapy. Am J Cardiovasc Drugs 1: 411–420

    PubMed  CAS  Google Scholar 

  • Rube CE, Wilfert F, Uthe D et al. (2002) Modulation of radiation-induced tumour necrosis factor alpha (TNF-alpha) expression in the lung tissue by pentoxifylline. Radiother Oncol 64: 177–187

    PubMed  CAS  Google Scholar 

  • Rubin P, Johnston CJ, Williams JP et al. (1995) A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Phys 33: 99–109

    PubMed  CAS  Google Scholar 

  • Ryu S, Kolozsvary A, Jenrow KA et al. (2007) Mitigation of radiation-induced optic neuropathy in rats by ACE inhibitor ramipril: importance of ramipril dose and treatment time. J Neurooncol 82: 119–124

    PubMed  CAS  Google Scholar 

  • Sanchiz F, Milla A, Artola N et al. (1996) Prevention of radioinduced cystitis by orgotein: a randomized study. Anticancer Res 16: 2025–2028

    PubMed  CAS  Google Scholar 

  • Saunders MI, Barltrop MA, Rassa PM et al. (1984) The relationship between tumor response and survival following radiotherapy for carcinoma of the bronchus. Int J Radiat Oncol Biol Phys 10: 503–508

    PubMed  CAS  Google Scholar 

  • Schild SE, McGinnis WL, Graham D et al. (2006) Results of a phase I trial of concurrent chemotherapy and escalating doses of radiation for unresectable non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 65: 1106–1111

    PubMed  CAS  Google Scholar 

  • Schmidt-Ullrich RK, Dent P, Grant S et al. (2000) Signal transduction and cellular radiation responses. Radiat Res 153: 245–257

    PubMed  CAS  Google Scholar 

  • Schultze-Mosgau S, Wehrhan F, Amann K et al. (2003) In vivo TGF-beta 3 expression during wound healing in irradiated tissue. An experimental study. Strahlenther Onkol 179: 410–416

    PubMed  Google Scholar 

  • Shi J, Wang J, Zheng H et al. (2003) Statins increase thrombomodulin expression and function in human endothelial cells by a nitric oxide-dependent mechanism and counteract tumor necrosis factor alpha-induced thrombomodulin downregulation. Blood Coagul Fibrinolysis 14: 575–585

    PubMed  CAS  Google Scholar 

  • Socinski MA, Blackstock AW, Bogart JA et al. (2008) Randomized phase II trial of induction chemotherapy followed by concurrent chemotherapy and dose-escalated thoracic conformal radiotherapy (74 Gy) in stage III non-small-cell lung cancer: CALGB 30105. J Clin Oncol 26: 2457–2463

    PubMed  CAS  Google Scholar 

  • Stinivasan V, Doctrow S, Singh V et al. (2007) Radiation counterneasure efficacy of superoxide dismutase (SOD)/catalase (CAT) mimetic EUK-189 in mice exposed to cobalt-60 gamma radiation. In: 13th International Congress of Radiation Research, San Francisco

    Google Scholar 

  • Stone HB, Coleman CN, Anscher MS et al. (2003) Effects of radiation on normal tissue: consequences and mechanisms. Lancet Oncol 4: 529–536

    PubMed  CAS  Google Scholar 

  • Terry NH, Brinkley J, Doig AJ et al. (2004) Cellular kinetics of murine lung: model system to determine basis for radioprotection with keratinocyte growth factor. Int J Radiat Oncol Biol Phys 58: 435–444

    PubMed  CAS  Google Scholar 

  • Trog D, Bank P, Wendt TG et al. (1999) Daily amifostine given concomitantly to chemoradiation in head and neck cancer. A pilot study. Strahlenther Onkol 175: 444–449

    PubMed  CAS  Google Scholar 

  • Tsoutsou PG, Koukourakis MI (2006) Radiation pneumonitis and fibrosis: mechanisms underlying its pathogenesis and implications for future research. Int J Radiat Oncol Biol Phys 66: 1281–1293

    PubMed  Google Scholar 

  • Ulich TR, Yi ES, Longmuir K et al. (1994) Keratinocyte growth factor is a growth factor for type II pneumocytes in vivo. J Clin Invest 93: 1298–1306

    PubMed  CAS  Google Scholar 

  • Undas A, Brozek J, Musial J (2002) Anti-inflammatory and antithrombotic effects of statins in the management of coronary artery disease. Clin Lab 48: 287–296

    PubMed  CAS  Google Scholar 

  • Valencia J, Velilla C, Urpegui A et al. (2002) The efficacy of orgotein in the treatment of acute toxicity due to radiotherapy on head and neck tumors. Tumori 88: 385–389

    PubMed  CAS  Google Scholar 

  • Veerasarn V, Phromratanapongse P, Suntornpong N et al. (2006) Effect of Amifostine to prevent radiotherapy-induced acute and late toxicity in head and neck cancer patients who had normal or mild impaired salivary gland function. J Med Assoc Thai 89: 2056–2067

    PubMed  Google Scholar 

  • Vodovotz Y, Chesler L, Chong H et al. (1999) Regulation of transforming growth factor beta1 by nitric oxide. Cancer Res 59: 2142–2149

    PubMed  CAS  Google Scholar 

  • Vozenin-Brotons MC, Sivan V, Gault N et al. (2001) Antifibrotic action of Cu/Zn SOD is mediated by TGF-b1 repression and phenotypic reversion of myofibroblasts. Free Radical Biol Med 30: 30–42

    CAS  Google Scholar 

  • Vujaskovic Z, Marks LB, Anscher MS (2000) The physical parameters and molecular events associated with radiation-induced lung toxicity. Semin Radiat Oncol 10: 296–307

    PubMed  CAS  Google Scholar 

  • Vujaskovic Z, Anscher MS, Feng QF et al. (2001) Radiation-induced hypoxia may perpetuate late normal tissue injury. Int J Radiat Oncol Biol Phys 50: 851–855

    PubMed  CAS  Google Scholar 

  • Vujaskovic Z, Batinic-Haberle I, Rabbani ZN et al. (2002a) A small molecular weight catalytic metalloporphyrin antioxidant with superoxide dismutase (SOD) mimetic properties protects lungs from radiation-induced injury. Free Radical Biol Med 33: 857–863

    CAS  Google Scholar 

  • Vujaskovic Z, Batinic-Haberle I, Rabbani ZN et al. (2002b) A small molecular weight catalytic metalloporphyrin antioxidant with superoxide dismutase (SOD) mimetic properties protects lungs from radiation-induced injury. Free Radic Biol Med 33: 857–863

    CAS  Google Scholar 

  • Vujaskovic Z, Feng QF, Rabbani ZN et al. (2002c) Radioprotection of lungs by amifostine is associated with reduction in profibrogenic cytokine activity. Radiat Res 157: 656–660

    CAS  Google Scholar 

  • Vujaskovic Z, Thrasher BA, Jackson IL et al. (2007) Radioprotective effects of amifostine on acute and chronic esophageal injury in rodents. Int J Radiat Oncol Biol Phys 69: 534–540

    PubMed  CAS  Google Scholar 

  • Waehre T, Damas JK, Gullestad L et al. (2003) Hydroxymethylglutaryl coenzyme a reductase inhibitors down-regulate chemokines and chemokine receptors in patients with coronary artery disease. J Am Coll Cardiol 41: 1460–1467

    PubMed  CAS  Google Scholar 

  • Wang J, Qiu X, Kulkarni A et al. (2006a) Calcitonin gene-related peptide and substance P regulate the intestinal radiation response. Clin Cancer Res 12: 4112–4118

    CAS  Google Scholar 

  • Wang J, Zheng H, Kulkarni A et al. (2006b) Regulation of early and delayed radiation responses in rat small intestine by capsaicin-sensitive nerves. Int J Radiat Oncol Biol Phys 64: 1528–1536

    CAS  Google Scholar 

  • Wang J, Boerma M, Fu Q et al. (2007a) Significance of endothelial dysfunction in the pathogenesis of early and delayed radiation enteropathy. World J Gastroenterol 13: 3047–3055

    CAS  Google Scholar 

  • Wang J, Boerma M, Fu Q et al. (2007b) Simvastatin ameliorates radiation enteropathy development after localized, fractionated irradiation by a protein C-independent mechanism. Int J Radiat Oncol Biol Phys 68: 1483–1490

    CAS  Google Scholar 

  • Wang J, Hauer-Jensen M (2007c) Neuroimmune interactions: potential target for mitigating or treating intestinal radiation injury. Br J Radiol 80 Spec No 1: S41–48

    Google Scholar 

  • Ward WF, Kim YT, Molteni A et al. (1988) Radiation-induced pulmonary endothelial dysfunction in rats: modification by an inhibitor of angiotensin converting enzyme. Int J Radiat Oncol Biol Phys 15: 135–140

    PubMed  CAS  Google Scholar 

  • Ward WF, Molteni A, Ts’ao CH (1989) Radiation-induced endothelial dysfunction and fibrosis in rat lung: modification by the angiotensin converting enzyme inhibitor CL242817. Radiat Res 117: 342–350

    PubMed  CAS  Google Scholar 

  • Williams JP, Hernady E, Johnston CJ et al. (2004) Effect of administration of lovastatin on the development of late pulmonary effects after whole-lung irradiation in a murine model. Radiat Res 161: 560–567

    PubMed  CAS  Google Scholar 

  • Yi ES, Williams ST, Lee H et al. (1996) Keratinocyte growth factor ameliorates radiation- and bleomycin-induced lung injury and mortality. Am J Pathol 149: 1963–1970

    PubMed  CAS  Google Scholar 

  • Zhao W, Diz DI, Robbins ME (2007) Oxidative damage pathways in relation to normal tissue injury. Br J Radiol 80 Spec No 1: S23–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jackson, I., Anscher, M., Vujaskovic, Z. (2009). Target-Based Interventions to Treat Radiation-Induced Lung Injury. In: Molls, M., Vaupel, P., Nieder, C., Anscher, M. (eds) The Impact of Tumor Biology on Cancer Treatment and Multidisciplinary Strategies. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74386-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74386-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74385-9

  • Online ISBN: 978-3-540-74386-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics