Skip to main content

Subsurface Geomicrobiology of the Iberian Pyritic Belt

  • Chapter
Microbiology of Extreme Soils

Terrestrial subsurface geomicrobiology is a matter of growing interest. On a fundamental level, it seeks to determine whether life can be sustained in the absence of radiation, whereas it also aims to develop practical applications in environmental biotechnology. Subsurface ecosystems are also intriguing exobiological models, useful for the re-creation of life on early Earth (Widdel et al. 1993) or the representation of life as it would occur in other planetary bodies (Boston et al. 1992). Subsurface ecosystems were originally reported in basalt aquifers (Stevens and McKinley 1995; Chapelle et al. 2002) and later in sedimentary aquifers, petroleum reservoirs, and alkaline and saline goldmine groundwater (Lin et al. 2006). Results obtained by deep-sea subsurface exploration initiatives are widening the scope of our knowledge in this field (D'Hondt et al. 2004). In this field there is a serious debate on whether the source of electron donors and/or acceptors is dependent on radiation-mediated reactions and also on contamination problems associated with drilling technologies, their mitigation, and control. In spite of the interest of subsurface ecosystems, information concerning microbial abundance, diversity, and sustainability is still scarce, mainly due to methodological limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilera A, Manrubia SC, Gómez F, Rodríguez N, Amils R (2006) Eukaryotic community distribution and its relationship to water physicochemical parameters in an extreme acidic environment, Río Tinto (Southwestern Spain). Appl Environ Microbiol 72:5325–5330

    Article  PubMed  CAS  Google Scholar 

  • Aguilera A, Souza-Egipsy V, Gómez F, Amils R (2007) Development and structure of eukaryotic biofilms in an extreme acidic environment, Río Tinto (SW, Spain). Microb Ecol 53:294–305

    Article  PubMed  Google Scholar 

  • Amaral-Zettler LA, Gomez F, Zettler E, Keenan BG, Amils R, Sogin ML (2002) Eukaryotic diversity in Spain’s River of Fire. Nature 417:137

    Article  PubMed  CAS  Google Scholar 

  • Amils R, González-Toril E, Fernández-Remolar D, Gómez F, Aguilera A, Rodríguez N, Malki M, García-Moyano A, Fairén AG, de la Fuente V, Sanz JL (2007) Extreme environments as Mars terrestrial analogs: The Río Tinto case. Planet Space Sci 55:370–381

    Article  CAS  Google Scholar 

  • Amils R, González-Toril E, Gómez F, Fernández-Remolar D, Rodríguez N, Malki M, Zuluaga J, Aguilera A, Amaral-Zettler LA (2004) Importance of chemolithotrophy for early life on Earth: The Tinto River (Iberian Pyritic Belt) case. In: Seckbach J (ed) Origins. Kluwer Academic Publisher, Dordrecht, pp. 463–480

    Google Scholar 

  • Apps J, van de Kamp P (1993). Energy gases of abiogenic origin in the Earth’s crust. U.S. Geological Survey Professional Paper 1570:81–132

    Google Scholar 

  • Avery, D (1974) Not on Queen Victoria’s Birthday. Collins, London

    Google Scholar 

  • Benz M, Brune A, Schink B (1998) Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria. Arch Microbiol 169:159–165

    Article  PubMed  CAS  Google Scholar 

  • Berazain R, de la Fuente V, Sánchez-Mata D, Rufo L, Rodríguez N, Amils R (2007) Nickel localization on tissues of hyperaccumulator species of Phyllanthus L. (Euphorbiaceae) from ultramafic areas of Cuba. Biol Trace Element Res 115:67–86

    Article  CAS  Google Scholar 

  • Boston PJ, Ivanov MV, McKay CP (1992). On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. Icarus 95:300–308

    Article  PubMed  CAS  Google Scholar 

  • Boulter CA (1996) Extensional tectonics and magmatism as drivers of convection leading to Iberian Pyrite Belt massive sulphide deposits? J Geol Soc London 153:181–184

    Article  CAS  Google Scholar 

  • Chalk P, Smith C (1983). Chemodenitrification. Dev Plant Soil Sci 9:65–89

    CAS  Google Scholar 

  • Chao TT, Zhou L (1983). Extraction techniques for selective dissolution of amorphous iron oxides from soils and sediments. Soil Sci Soc Am J 47:225–232

    Article  CAS  Google Scholar 

  • Chapelle FH, O’Neill K, Bradley PM, Methe BA, Ciufo SA, Knobel LL, Lovley DR (2002). A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415:312–315

    Article  PubMed  Google Scholar 

  • Colmer AR, Temple KL, Hinkle HE (1950) An iron-oxidizing bacterium from the acidic drainage of some bituminous coal mines. J Bacteriol 59:317–328

    PubMed  CAS  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O and NO). Microbiol Rev 60:609–640

    PubMed  CAS  Google Scholar 

  • Davis Jr RA, Nelly AT, Borrego J, Morales JA, Pendon JG, Ryan JG (2000) Rio Tinto estuary (Spain): 5000 years of pollution. Environ Geol 39:1107–1116

    Article  CAS  Google Scholar 

  • D’Hondt S et al. (2004) Distribution of microbial activities in deep subseafloor sediments. Science 306:22162221

    Google Scholar 

  • Drobner E, Huber H, Wächtershäuser G, Rose D Stetter, KO (1990). Pyrite formation linked with hydrogen evolution under anaerobic conditions. Nature 346:742–744

    Article  CAS  Google Scholar 

  • Edwards KJ, Gihring TM, Banfield JF (1999). Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment. Appl Environ Microbiol 65:3627–3632

    PubMed  CAS  Google Scholar 

  • Ehrlich, HL (2002) Geomicrobiology, 4th ed. Marcel Dekker

    Google Scholar 

  • Elbaz-Poulichet F, Braungardt C, Achterberg E, Morley N, Cossa D, Beckers JM, Nomérange P, Cruzado A, Leblanc M (2001) Metal biogeochemistry in the Tinto-Odiel rivers (Southern Spain) and in the Gulf of Cadiz, a synthesis of the results of TOROS project. Continental Shelf Res 21:1961–1973

    Article  Google Scholar 

  • Fairén AG, Fernández-Remolar D, Dohm JM, Baker VR, Amils R (2004) Inhibition of carbonate synthesis in acidic oceans on early Mars. Nature 431:423–426

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Remolar D, Morris RV, Gruener JE, Amils R, Knoll AH (2005b) The Rio Tinto Basin, Spain: Mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum. Mars Earth Planet Sci Lett 240:149–167

    Article  CAS  Google Scholar 

  • Fernández-Remolar D, Prieto-Ballesteros O, Rodríguez N, Gómez F, Amils R, Gómez-Elvira J, Stoker C (2008) Underground habitats found in the Río Tinto Basin: an approach to Mars subsurface life exploration. Astrobiol in press

    Google Scholar 

  • Fernández-Remolar D, Prieto-Ballesteros O, Rodríguez N, Dávila F, Stevens T, Amils R, Gómez-Elvira J, Stoker C (2005a) Rio Tinto faulted volcanosedimentary deposits as analog habitats for extant subsurface biospheres on Mars: A synthesis of the MARTE drilling project geobiology results. Lunar and Planetary Science Conference, Abstract 136

    Google Scholar 

  • Fernández-Remolar D, Rodríguez N, Gómez F, Amils R (2003). Geological record of an acidic environment driven by iron hydrochemistry: The Tinto River system. J Geophys Res 108(E7):5080–5095, doi:1029/2002JE001918

    Article  CAS  Google Scholar 

  • Formisano V, Atreya S, Encrenas T, Ignatiev N, Giuranna M (2004) Detection of methane in the atmosphere of Mars. Science 306:1758–1761

    Article  PubMed  CAS  Google Scholar 

  • Gehrke T, Hallmann R, Sand W (1995). Importance of exopolymers from Thiobacillus ferrooxidans and Leptospirillum ferrooxidans for bioleaching. In Jérez C, Vargas JT, Wiertz JV, Toledo H (eds) Biohydrometallurgical Processing, vol. 1. Universidad de Chile, Santiago, pp. 1–11

    Google Scholar 

  • Golovacheva RS, Golyshina OV, Karavaiko GI, Dorofeev AG, Pivovarova TA, Chernykh A (1992) A new iron-oxidizing bacterium, Leptospirillum thermoferrooxidans sp. nov. Microbiology 61: 744–750

    Google Scholar 

  • González-Toril E, Gómez F, Malki M, Amils R (2006) The isolation and study of acidophilic microorganisms. In Rainey FA, Oren A (eds) Extremophiles. Methods in Microbiology, vol. 35. Elsevier Academic Press, London, pp. 471–510

    Google Scholar 

  • Gonzalez-Toril E, Llobet-Brossa E, Casamayor EO, Amann R, Amils R (2003). Microbial ecology of an extreme acidic environment, the Tinto River. Appl Environ Microbiol 69:4853–4865

    Article  PubMed  CAS  Google Scholar 

  • Jernsletten JA (2005) Fast-turnoff transient electromagnetic (TEM) field study at the Mars analog site of Río Tinto, Spain. Lunar and Planetary Science Conference, Abstract 1014

    Google Scholar 

  • Leistel, JM, Marcoux E, Theiblemont D, Quesada C, Sánchez A, Almodóvar GR, Pascual E, Saez R (1998). The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt. Mineralium Deposita 33:2–30

    Article  CAS  Google Scholar 

  • Lin LH, Wang PL, Rumble D, Lippmann-Pipke J, Boice E, Pratt LM, Sherwood Lollar B, Brodie EL, Hazen TC, Andersen GL, DeSantis TZ, Moser DP, Kershaw D, Onstott TC (2006) Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314:479–482

    Article  PubMed  CAS  Google Scholar 

  • López-Archilla AI, González AE, Terrón MC, Amils R (2005) Diversity and ecological relationships of the fungal populations of an acidic river of Southwestern Spain: the Tinto River. Can J Microbiol 50:923–934

    Article  Google Scholar 

  • López-Archilla AI, Marín I, Amils R (2001) Microbial community composition and ecology of an acidic aquatic environment: The Tinto River, Spain. Microb Ecol 41: 20–35

    PubMed  Google Scholar 

  • Lovley DR, Phillips EJP (1987) Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microbiol 53:1536–140

    PubMed  CAS  Google Scholar 

  • Malki M, González-Toril E, Sanz JL, Gómez F, Rodríguez N, Amils R (2006) Importance of the iron cycle in biohydrometallurgy. Hydrometallurgy 83:223–228

    Article  CAS  Google Scholar 

  • Moreno C, Capitán MA, Doyle M, Nieto JM, Ruiz F, Sáez R (2003) Edad minima del gossan de Las Cruces: Implicaciones sobre la edad de inicio de los ecosistemas extremos en la Faja Pirítica Ibérica. Geogaceta 33:75–78

    Google Scholar 

  • Rodríguez N, Amils R, Jiménez-Ballesta R, Rufo L, de la Fuente V (2007) Heavy metal content in Erica andevalensis: An endemic plant from the extreme acidic environment of Tinto River and its soils. Arid Land Res Manag 21:1–15

    Article  Google Scholar 

  • Rodríguez N, Menéndez N, Tornero J, Amils R, de la Fuente V (2005) Internal iron biomineralization in Imperata cylindrica, a perennial grass: Chemical composition, speciation and plant localization. New Phytol 165:781–789

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular Cloning: A Laboratory Manual, 3rd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sand W, Gerke T, Hallmann R, Schippers A (1995). Sulfur chemistry, biofilm, and the (in)direct attack mechanism - A critical evaluation of bacterial leaching. Appl Microbiol Biotech 43:961–966

    Article  CAS  Google Scholar 

  • Sand W, Gehrke T, Jozsa PG, Schippers A (2001) (Bio) chemistry of bacterial leaching—Direct vs. indirect bioleaching. Hydrometallurgy 59:159–175

    Article  CAS  Google Scholar 

  • Sanz JL, Rodríguez N, Amils R (1997) Effect of chlorinated aliphatic hydrocarbons on the acetoclastic methanogenic activity of granular sludge. Appl Microbiol Biotechnol 47:324–328

    Article  CAS  Google Scholar 

  • Schmidt W (2003) Iron solutions: Acquisition strategies and signaling pathways in plants. Trends Plant Sci 8:188–193

    Article  PubMed  CAS  Google Scholar 

  • Squyres S, et al. (2004) In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 306:1709–1714

    Article  PubMed  CAS  Google Scholar 

  • Stevens TO, McKinley JP (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270:450–454

    Article  CAS  Google Scholar 

  • Stevens TO, McKinley JP (2000) Abiotic controls on H2 production from basalt-water reactions and implications for aquifer biogeochemistry. Environ Sci Technol 34:826–831

    Article  CAS  Google Scholar 

  • Stoker C, Dunagan S, Stevens T, Amils R, Gómez-Elvira J, Fernández D, Hall J, Cannon H, Zavaleta J, Glass B, Lemke L (2004) Mars analog Río Tinto Experiment (MARTE): 2003 drilling campaign to search for a subsurface biosphere at Río Tinto, Spain. Lunar and Planetary Science Conference, LPI contribution 1197, paper # 2025

    Google Scholar 

  • van Geen A, Adkins JF, Boyle EA, Nelson CH, Palenques A (1997) A 120-year record of widespread contamination from mining of the Iberian Pyritic belt. Geology 25:291–294

    Article  Google Scholar 

  • Visviki I, Rachlin JW (1993) Acute and chronic exposure of Dunaliella salina and Chlamydomonas bullosa to copper and cadmium: Effects on growth. Arch Environ Contam Toxicol 26:149–153

    Google Scholar 

  • Visviki I, Santikul D (2000) The pH tolerance of Chlamydomonas applanata (Volvocales, Chlorophyta). Arch Environ Contam Toxicol 38:147–151

    Article  PubMed  CAS  Google Scholar 

  • Wächtershäuser G (1988) Pyrite formation, the first energy source for life: A hypothesis. System Appl Microbiol 10:207–210

    Google Scholar 

  • Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362:834–836

    Article  CAS  Google Scholar 

  • Zolotov M, Shock E (2005). Formation of jarosite-bearing deposits through aqueous oxidation of pyrite at the Meridiani Planum, Mars Geophys Res Lett 32:L21203. doi: 10.1029/2005GL024253

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Amils, R. et al. (2008). Subsurface Geomicrobiology of the Iberian Pyritic Belt. In: Dion, P., Nautiyal, C.S. (eds) Microbiology of Extreme Soils. Soil Biology, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74231-9_10

Download citation

Publish with us

Policies and ethics