Skip to main content

Interactions Between Epiphyllic Microorganisms and Leaf Cuticles

  • Chapter
Plant Surface Microbiology

Leaves of higher plants are exposed to the atmosphere. Due to the pronounced two-dimensional structure of leaves, the surface area of plants is significantly enlarged.This allows an efficient absorption of visible light used in photosynthesis and it supports the rapid gas exchange of carbon dioxide and oxygen, occurring across stomates. With most leaves, stomates representing small pores, cover only between 0.5 to 1 % of the total leaf surface area (Larcher 1996), whereas the largest part of the leaf surface is covered by the plant cuticle forming the major interface between the leaves and the atmosphere (Kerstiens 1996). The cuticle developed during evolution when plants moved from their aqueous habitats to the dry land. It protects land living plants from desiccation. The water potential in the atmosphere is nearly always lower than the water potential of plants, which causes a constant driving force for the flow of water from the plant body to the atmosphere (Nobel 1991).Without the cuticle forming a very efficient transport barrier for the passive diffusion of water from the turgescent plant to the atmosphere, most of the land-living higher plants would never be able to survive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Selected Reading

  • Agrios GN (1995) Plant pathology. San Diego, Academic Press

    Google Scholar 

  • Amann R, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detec-tion of individual microbial cells without cultivation. Microbiol Rev 59:143-169

    CAS  PubMed  Google Scholar 

  • Andrews JH (1992) Biological control in the phyllosphere. Annu Rev Phytopathol 30:603-635

    Article  CAS  PubMed  Google Scholar 

  • Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms of plant surfaces. Annu Rev Phytopathol 38:145-180

    Article  PubMed  Google Scholar 

  • Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1-8

    Article  CAS  Google Scholar 

  • Beattie GA, Lindow SE (1995) The secret life of foliar bacterial pathogens on leaves. Annu Rev Phytopathol 33:145-172

    Article  CAS  PubMed  Google Scholar 

  • Beattie GA, Lindow SE (1999) Bacterial colonization of leaves: a spectrum of strategies. Phytopathology 89:353-359

    Article  CAS  PubMed  Google Scholar 

  • Bianchi G (1995) Plant waxes. In: Hamilton RJ (ed) Waxes: chemistry, molecular biology and functions. The Oily Press, Dundee, pp 175-222

    Google Scholar 

  • Blakeman JP (1991) Foliar bacterial pathogens: epiphytic growth and interactions on leaves. J Appl Bacteriol 70:49-59

    Google Scholar 

  • Blakeman JP (1993) Pathogens in the foliar environment. Plant Path 42:479-493

    Article  Google Scholar 

  • Bunster L, Fokkema NJ, Schippers B (1989) Effect of surface-active Pseudomonas sp. on leaf wettability. Appl Environ Microbiol 55:1340-1345

    PubMed  CAS  Google Scholar 

  • Cape JN (1983) Contact angles of water droplets on needles of Scots pine (Pinus syl-vestris) growing in polluted atmospheres. New Phytol 93:293-299

    Article  Google Scholar 

  • Cape JN, Percy KE (1993) Environmental influences on the development of spruce nee-dle cuticles. New Phytol 125:787-799

    Article  Google Scholar 

  • Dickinson CH, Preece TF (1976) Microbiology of aerial plant surfaces. Academic Press, London

    Google Scholar 

  • Dixon RA, Lamb CJ (1990) Molecular communication in interactions between plants and microbial pathogens. Annu Rev Plant Phys Plant Mol Biol 41:339-367

    Article  CAS  Google Scholar 

  • Ercolani GL (1991) Distribution of epiphytic bacteria on olive leaves and the influence of leaf age and sampling time. Microb Ecol 21:35-48

    Article  Google Scholar 

  • Fiss M, Kucheryava N, Schonherr J, Kollar A, Arnold G, Auling G. (2000) Isolation and characterization of epiphytic fungi from the phyllosphere of apple as potential bio-control agents against apple scab (Venturia inaequalis). J Plant Dis Prot 107:1-11

    Google Scholar 

  • Fokkema NJ, van den Heuvel J (1986) Microbiology of the phyllosphere. Academic Press, New York

    Google Scholar 

  • Fox RC (1958) The relationship of wax crystal structure to the water vapor transmission rate of wax films. Tech Assoc Pulp Paper Ind 41:283-289

    CAS  Google Scholar 

  • Gülz PG (1994) Epicuticular leaf waxes in the evolution of the plant kingdom. J Plant Physiol 143:453-464

    Google Scholar 

  • Holloway PJ (1970) Surface factors affecting the wetting of leaves. Pest Sci 1:156-163

    Article  CAS  Google Scholar 

  • Jacques MA, Morris CE (1995) A review of issues related to the quantification of bacteria from the phyllosphere. FEMS Microbiol Ecol 18:1-14

    Article  CAS  Google Scholar 

  • Jeffree CE (1986) The cuticle, epicuticular waxes and trichomes of plants, with reference to their structure, functions and evolution. In: Juniper BE, Southwood R (eds) Insects and plant surfaces. Edward Arnold, London, pp 23-64

    Google Scholar 

  • Karanth NGK, Deo PG, Veenanadig NK (1999) Microbial production of biosurfactants and their importance. Curr Sci 77:116-126

    CAS  Google Scholar 

  • Kerstiens G (1996) Signalling across the divide: a wider perspective of cuticular struc-ture-function relationships. Trends Plant Sci 1: 125-129

    Article  Google Scholar 

  • Kinkel LL (1991) Microbial population dynamics on leaves. Annu Rev Phytopathol 35:327-347

    Article  Google Scholar 

  • Knoll D (1998) Die Bedeutung der Kutikula bei der Interaktion zwischen epiphyllen Mikroorganismen und Blattoberflächen. PhD Thesis, University of Würzburg, Ger-many

    Google Scholar 

  • Knoll D, Schreiber L (1998) Influence of epiphytic micro-organisms on leaf wettability: wetting of the upper leaf surface of Juglans regia and of model surfaces in relation to colonization by microorganisms. New Phytol 140:271-282

    Article  Google Scholar 

  • Knoll D, Schreiber L (2000) Plant-microbe interactions: wetting of ivy (Hedera helix L. ) leaf surfaces in relation to colonization by epiphytic microorganisms. Microb Ecol 41:33-42

    Google Scholar 

  • Kolattukudy PE (2001) Polyesters in higher plants. Adv Biochem Engin Biotech 71:1-49

    CAS  Google Scholar 

  • Larcher W (1996) Physiological plant ecology: ecophysiology and stress physiology of functional groups. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Leben C (1988) Relative humidity and the survival of epiphytic bacteria with buds and leaves of cucumber plants. Phytopathology 78:179-185

    Article  Google Scholar 

  • Marilley L, Vogt G, Blanc M, Aragno M (1998) Bacterial diversity in the bulk soil and rhi-zosphere fractions of Lolium perenne and Trifolium repens as revealed by PCR restriction analysis of 16S rDNA. Plant Soil 198:219-224

    Article  CAS  Google Scholar 

  • Markstädter C, Federle W, Jetter R, Riederer M, Hölldobler B (2000) Chemical composi-tion of the slippery epicuticular wax blooms on Macaranga (Euphorbiaceae) ant-plants. Chemoecology 10:33-40

    Article  Google Scholar 

  • Mendgen K (1996) Fungal attachment and penetration. In: Kerstiens G (ed) Plant cuti-cles: an integrated functional approach. BIOS Scientific Publishers, Oxford, pp 175-188

    Google Scholar 

  • Morris CE, Monier JM, Jacques MA (1997) Methods for observing microbial biofilms directly on leaf surfaces and recovering them for isolation of culturable microorgan-isms. Appl Environ Microbiol 63:1570-1576

    CAS  PubMed  Google Scholar 

  • Morris CE, Monier JM, Jacques MA (1998) A technique to quantify the population size and composition of the biofilm component in communities of bacteria in the phyl-losphere. Appl Environ Microbiol 64:4789-4795

    CAS  PubMed  Google Scholar 

  • Morris CE, Nicot PC, Nguyen CN (1996) Aerial plant surface microbiology. Plenum Press, New York

    Book  Google Scholar 

  • Neinhuis C, Barthlott W (1998) Seasonal changes of leaf surface contamination in beech, oak, and gingko in relation to leaf micromorphology and wettability. New Phytol 138:91-98 156Lukas Schreiber, Ursula Krimm and Daniel Knoll

    Google Scholar 

  • Nobel PS (1991) Physicochemical and environmental plant physiology. Academic Press, San Diego

    Google Scholar 

  • Ogram A (2000) Soil molecular microbial ecology at age 20: methodological challenges for the future. Soil Biol Biochem 32:1499-1504

    Article  CAS  Google Scholar 

  • Persson A, Oesterberg E, Dostalek M (1988) Biosurfactant production by Pseudomonas fluorescens 378: growth and product characteristics. Appl Microbiol Biotech 29:1-4

    Article  CAS  Google Scholar 

  • Preece TF, Dickinson CH (1971) Ecology of leaf surface microorganisms. Academic Press, London

    Google Scholar 

  • Reynhardt EC Riederer M (1994) Structures and molecular dynamics of plant waxes. II Cuticular waxes from leaves of Fagus sylvatica L. and Hordeum vulgare L. Eur Biophys J 23:59-70

    Google Scholar 

  • Riederer M, Markstädter C (1996) Cuticular waxes: a critical assessment of current knowledge. In: Kerstiens G (ed) Plant cuticles: an integrated functional approach. BIOS Scientific Publishers, Oxford, pp 189-200

    Google Scholar 

  • Riederer M, Schönherr J (1990) Effects of surfactants on water permeability of isolated plant cuticles and on the composition of their cuticular waxes. Pest Sci 29:85-94

    Article  CAS  Google Scholar 

  • Riederer M, Schreiber L (1995) Waxes: the transport barriers of plant cuticles. Plant waxes. In: Hamilton RJ (ed) Waxes: chemistry, molecular biology and functions. The Oily Press, Dundee, pp 131-156

    Google Scholar 

  • Romantschuk M (1992) Attachment of plant pathogenic bacteria to plant surfaces. Annu Rev Phytopathol 30:225-243

    Article  CAS  PubMed  Google Scholar 

  • Schäfer W (1998) The involvement of fungal cutinase in early processes of plant infec-tion. Mol Genet Host-Specific Toxins Plant Dis 13:273-280

    Google Scholar 

  • Schönherr J, Baur P (1996) Cuticle permeability studies: a model for estimating leaching of plant metabolites to leaf surfaces. In: Morris CE, Nicot PC, Nguyen CN (eds) Aerial plant surface microbiology. Plenum Press, New York, pp 1-23

    Chapter  Google Scholar 

  • Schönherr J, Riederer M (1989) Foliar penetration and accumulation of organic chemicals in plant cuticles. Rev Environ Cont Toxicol 108:1-70

    Google Scholar 

  • Schreiber L (1996) Wetting of the upper needle surface of Abies grandis: influence of pH, wax chemistry and epiphyllic microflora on contact angles. Plant Cell Environ 19:455-463

    Article  CAS  Google Scholar 

  • Schreiber L, Schönherr J (1993) Determination of foliar uptake of chemicals: influence of leaf surface microflora. Plant Cell Environ 16:743-748

    Article  CAS  Google Scholar 

  • Schreiber L, Schorn K, Heimburg T (1997) H NMR study of cuticular wax isolated from Hordeum vulgare L. leaves: identification of amorphous and crystalline wax phases. Eur Biophys J 26:371-380

    Article  CAS  Google Scholar 

  • Stadler B, Müller T (1996) Aphid honeydew and its effect on the phyllosphere microflora of Picea abies (L. ) Karst. Oecologia 108:771-776

    Article  Google Scholar 

  • Tiedje JM, Asuming Brempong S, Nusslein K, Marsh TL, Flynn SJ (1999) Opening the black box of soil microbial diversity. Appl Soil Ecol 13:109-122

    Article  Google Scholar 

  • Tukey HB (1970) The leaching of substances from plants. Annu Rev Plant Phys 21: 305-324

    Article  CAS  Google Scholar 

  • Turunen M, Huttunen S (1989) A review of the response of epicuticular wax of conifer needles to air pollution. J Environ Qual 19:35-45

    Article  Google Scholar 

  • van Gardingen PR, Grace J, Jeffree CE (1991) Abrasive damage by wind to the needle surfaces of Picea sitchensis (Bong) Carr and Pinus sylvestris L. Plant Cell Environ 14:185-193

    Article  Google Scholar 

  • Walton TJ (1990) Waxes, cutin and suberin. Meth Plant Biochem 4:105-158

    CAS  Google Scholar 

  • Yang CH, Crowley DE, Borneman J, Keen NT (2001) Microbial phyllosphere populations are more complex than previously realized. Proc Natl Acad Sci USA 98:3889-3894

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schreiber, L., Krimm, U., Knoll, D. (2008). Interactions Between Epiphyllic Microorganisms and Leaf Cuticles. In: Varma, A., Abbott, L., Werner, D., Hampp, R. (eds) Plant Surface Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74051-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74051-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74050-6

  • Online ISBN: 978-3-540-74051-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics