Skip to main content

Cryptosporidium represents a group of early-branched apicomplexans. Various Cryptosporidium species may infect humans and/or animals, causing cryptosporidiosis for which no completely effective treatments are yet available. The chapter provides updated information on Cryptosporidium in the basic parasitology (e.g., taxonomy, life cycle, genotypes, and treatments), genomics (e.g., general features of the genomes, comparison between C. parvum and C. hominis genomes, genome maps, genome databases, and resources), and the insights into the Cryptosporidium biology delineated from the genomes, including streamlined metabolism, expanded families of transporters, lineage-specific expansion of proteases, Cryptosporidium-specific amplified gene families, surface protein repertoire, mucin-like proteins, TRAP family of motility and invasion proteins, oocyst wall proteins, and potential drug targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, Buck GA, Xu P, Bankier AT, Dear PH, Konfortov BA, Spriggs HF, Iyer L, Anantharaman V, Aravind L, Kapur V (2004) Complete genome sequence of the apicomplexanCrypt-osporidium parvum. Science 304:441–445

    PubMed  CAS  Google Scholar 

  • Aiello AE, Xiao L, Limor JR, Liu C, Abrahamsen MS, Lal AA (1999) Microsatellite analysis of the human and bovine genotypes ofCryptosporidiumparvum. J Eukaryot Micro-biol 46:46S–47S

    CAS  Google Scholar 

  • Alvarez-Pellitero P, Sitja-Bobadilla A (2002)Cryptosporidium molnarin. sp. (Apicomplexa: Cryptosporidiidae) infecting two marine fish speciesSparus aurataL. andDicentra-rchus labraxL. Int J Parasitol 32:1007–1021

    Google Scholar 

  • Amadi B, Mwiya M, Musuku J, Watuka A, Sianongo S, Ayoub A, Kelly P (2002) Effect of nitazoxanide on morbidity and mortality in Zambian children with cryptosporidiosis: a randomised controlled trial. Lancet 360:1375–1380

    PubMed  Google Scholar 

  • Anderson DR, Duszynski DW, Marquardt WC (1968) Three new coccidia (Protozoa: Telosporea) from kingsnakesLampropeltisspp., in Illinois, with a redescription ofEime-ria zamenisPhisalix, 1921. J Parasitol 54:577–581

    Google Scholar 

  • Aurrecoechea C, Heiges M, Wang H, Wang Z, Fischer S, Rhodes P, Miller J, Kraemer E, Stoeckert CJ Jr, Roos DS, Kissinger JC (2006) ApiDB: integrated resources for the apicompl-exan bioinformatics resource center. Nucl Acids Res 35 (Database issue):D427–D430

    PubMed  Google Scholar 

  • Bankier AT, Spriggs HF, Fartmann B, Konfortov BA, Madera M, Vogel C, Teichmann SA, Ivens A, Dear PH (2003) Integrated mapping, chromosomal sequencing and sequence analysis ofCryptosporidium parvum. Genom Res 13:1787–1799

    CAS  Google Scholar 

  • Barnes DA, Bonnin A, Huang JX, Gousset L, Wu J, Gut J, Doyle P, Dubremetz JF, Ward H, Petersen C (1998) A novel multi-domain mucin-like glycoprotein ofCryptosporidium par-vummediates invasion. Mol Biochem Parasitol 96:93–110

    PubMed  CAS  Google Scholar 

  • Barta JR, Thompson RC (2006) What isCryptosporidium? Reappraising its biology and phylogenetic affinities. Trends Parasitol 22:463–468

    PubMed  Google Scholar 

  • Bearup AJ (1954) The coccidia of carnivores of Sydney. Aust Ve t J 30:185–186

    Google Scholar 

  • Bonnin A, Ojcius DM, Souque P, Barnes DA, Doyle PS, Gut J, Nelson RG, Petersen C, Dubremetz JF (2001) Characterization of a monoclonal antibody reacting with antigen-4 domain of gp900 inCryptosporidium parvuminvasive stages. Parasitol Res 87:589–592

    PubMed  CAS  Google Scholar 

  • Brends SJ (1989–2005) Systema Naturae 2000 The Taxonomi-con. Universal Taxonomic Services, Amsterdam, The Netherlands. [http://sn2000.taxonomy.nl/Taxonomicon/]. Access date: Nov 23, 2005

  • Bull S, Chalmers R, Sturdee A P, Curry A, Kennaugh J (1998) Cross-reaction of an anti-Cryptosporidiummonoclonalantibody with sporocysts of Monocystis species. Vet Para-sitol 77:195–197

    CAS  Google Scholar 

  • Byington CL, Dunbrack RL, Jr., Cohen FE, Agabian N (1997a) Molecular modeling of phosphofructokinase fromEnta-moeba histolyticafor the prediction of new antiparasitic agents. Arch Med Res 28(Spec No):86–88

    CAS  Google Scholar 

  • Byington CL, Dunbrack RL, Jr., Whitby FG, Cohen FE, Agabian N (1997b)Entamoeba histolytica: computer-assisted modeling of phosphofructokinase for the prediction of broad-spectrum antiparasitic agents. Exp Parasitol 87:194–202

    CAS  Google Scholar 

  • Caccio S, Homan W, Camilli R, Traldi G, Kortbeek T, Pozio E (2000) A microsatellite marker reveals population heterogeneity within human and animal genotypes ofCrypt-osporidium parvum. Parasitology 120(Pt 3):237–244

    PubMed  Google Scholar 

  • Caccio S, Homan W, van Dijk K, Pozio E (1999) Genetic polymorphism at the beta-tubulin locus among human and animal isolates ofCryptosporidium parvum. FEMS Micro-biol Lett 170:173–179

    CAS  Google Scholar 

  • Cai X, Lancto CA, Abrahamsen MS, Zhu G (2004) Intron-containing beta-tubulin transcripts inCryptosporidium parvumcultured in vitro. Microbiology 150:1191–1195

    PubMed  CAS  Google Scholar 

  • Carreno RA, Martin DS, Barta JR (1999)Cryptosporidiumis more closely related to the gregarines than to coccidia as shown by phylogenetic analysis of apicomplexan parasites inferred using small-subunit ribosomal RNA gene sequences. Parasitol Res 85:899–904

    PubMed  CAS  Google Scholar 

  • Carruthers VB, Sibley LD (1997) Sequential protein secretion from three distinct organelles ofToxoplasma gondiiaccompanies invasion of human fibroblasts. Eur J Cell Biol 73:114–123

    PubMed  CAS  Google Scholar 

  • Cevallos AM, Bhat N, Verdon R, Hamer DH, Stein B, Tzipori S, Pereira ME, Keusch GT, Ward HD (2000) Mediation ofCryptosporidium parvuminfection in vitro by mucin-like glycoproteins defined by a neutralizing monoclonal antibody. Infect Immun 68:5167–5175

    PubMed  CAS  Google Scholar 

  • Chen XM, LaRusso NF (2000) Mechanisms of attachment and internalization ofCryptosporidium parvumto biliary and intestinal epithelial cells. Gastroenterology 118:368–379

    PubMed  CAS  Google Scholar 

  • Ctrnacta V, Ault JG, Stejskal F, Keithly JS (2006) Localization of pyruvate:NADP+ oxidoreductase in sporozoites ofCrypt-osporidium parvum. J Eukaryot Microbiol 53:225–231

    PubMed  CAS  Google Scholar 

  • Current WL, Reese NC (1986) A comparison of endogenous development of three isolates ofCryptosporidiumin suckling mice. J Protozool 33:98–108

    PubMed  CAS  Google Scholar 

  • Current WL, Upton SJ, Haynes TB (1986) The life cycle ofCryptosporidium baileyin. sp. (Apicomplexa, Cryptospori-diidae) infecting chickens. J Protozool 33:289–296

    PubMed  CAS  Google Scholar 

  • Delrieu I, Waller CC, Mota MM, Grainger M, Langhorne J, Holder AA (2002) PSLAP, a protein with multiple adhesive motifs, is expressed inPlasmodium falciparumgameto-cytes. Mol Biochem Parasitol 121:11–20

    PubMed  CAS  Google Scholar 

  • Deng M, Templeton TJ, London NR, Bauer C, Schroeder AA, Abrahamsen MS (2002)Cryptosporidium parvumgenescontaining thrombospondin type 1 domains. Infect Immun 70:6987–6995

    PubMed  CAS  Google Scholar 

  • Dorn A, Vippagunta SR, Matile H, Jaquet C, Vennerstrom JL, Ridley RG (1998) An Assessment of drug-haematin binding as a mechanism for inhibition of haematin polymerization by quinoline antimalarials. Biochem Pharmacol 55:727–736

    PubMed  CAS  Google Scholar 

  • Doumbo O, Rossignol JF, Pichard E, Traore HA, Dembele TM, Diakite M, Traore F, Diallo DA (1997) Nitazoxanide in the treatment of cryptosporidial diarrhea and other intestinal parasitic infections associated with acquired immunodeficiency syndrome in tropical Africa. Am J Trop Med Hyg 56:637–639

    PubMed  CAS  Google Scholar 

  • Dubey JP, Pande BP (1963) Observations on the coccidian oocysts from Indian Jungle cat (Felis chaus). Ind J Micro-biol 3:103–108

    Google Scholar 

  • Duszynski DW (1969) Two new coccidia (Protozoa: Dimerii-dae) from Costa Rican lizards with a review of theEimeriafrom lizards. J Protozool 16:581–585

    PubMed  CAS  Google Scholar 

  • Egyed Z, Sreter T, Szell Z, Beszteri B, Dobos-Kovacs M, Maria-ligeti K, Cornelissen AW, Varga I (2002) Polyphasic typing ofCryptosporidium baileyi: a suggested model for characterization of cryptosporidia. J Parasitol 88:237–243

    PubMed  CAS  Google Scholar 

  • Egyed Z, Sreter T, Szell Z, Varga I (2003) Characterization ofCryptosporidiumspp. — recent developments and future needs. Vet Parasitol 111:103–114

    PubMed  CAS  Google Scholar 

  • Eisen JA, Coyne RS, Wu M, Wu D, Thiagarajan M, Wortman JR, Badger JH, Ren Q, Amedeo P, Jones KM, Tallon LJ, Delcher AL, Salzberg SL, Silva JC, Haas BJ, Majoros WH, Farzad M, Carlton JM, Smith RK Jr., Garg J, Pearlman RE, Karrer KM, Sun L, Manning G, Elde NC, Turkewitz A P, Asai DJ, Wilkes DE, Wang Y, Cai H, Collins K, Stewart BA, Lee SR, Wilamowska K, Weinberg Z, Ruzzo WL, Wloga D, Gaer-tig J, Frankel J, Tsao CC, Gorovsky MA, Keeling PJ, Waller RF, Patron NJ, Cherry JM, Stover NA, Krieger CJ, del Toro C, Ryder HF, Williamson SC, Barbeau RA, Hamilton E P, Orias E (2006) Macronuclear genome sequence of the cili-ateTetrahymena thermophila, a model eukaryote. PLoS Biol 4:e286

    PubMed  Google Scholar 

  • Espinosa A, Clark D, Stanley SL Jr (2004)Entamoeba histo-lyticaalcohol dehydrogenase 2 (EhADH2) as a target for anti-amoebic agents. J Antimicrob Chemother 54:56–59

    PubMed  CAS  Google Scholar 

  • Esposito M, Stettler R, Moores SL, Pidathala C, Muller N, Sta-chulski A, Berry NG, Rossignol JF, Hemphill A (2005) In vitro efficacies of nitazoxanide and other thiazolides againstNeospora caninumtachyzoites reveal antipara-sitic activity independent of the nitro group. Antimicrob Agents Chemother 49:3715–3723

    PubMed  CAS  Google Scholar 

  • Fayer R (1997)Cryptosporidiumand cryptosporidiosis. CRC Press, Boca Raton, Florida, USA

    Google Scholar 

  • Fayer R, Morgan U, Upton SJ (2000) Epidemiology ofCrypt-osporidium: transmission, detection and identification. Int J Parasitol 30:1305–1322

    PubMed  CAS  Google Scholar 

  • Fayer R, Santin M, Xiao L (2005)Cryptosporidium bovisn. sp. (Apicomplexa: Cryptosporidiidae) in cattle (Bos taurus). J Parasitol 91:624–629

    PubMed  Google Scholar 

  • Fayer R, Trout JM, Xiao L, Morgan UM, Lai AA, Dubey JP (2001)Cryptosporidium canisn. sp. from domestic dogs. J Parasi-tol 87:1415–1422

    CAS  Google Scholar 

  • Fayer R, Ungar BL (1986)Cryptosporidiumspp. and crypt-osporidiosis. Microbiol Rev 50:458–483

    PubMed  CAS  Google Scholar 

  • Feng X, Rich SM, Akiyoshi D, Tumwine JK, Kekitiinwa A, Nabukeera N, Tzipori S, Widmer G (2000) Extensive polymorphism inCryptosporidium parvumidentified by mul-tilocus microsatellite analysis. Appl Environ Microbiol 66:3344–3349

    PubMed  CAS  Google Scholar 

  • Fox LM, Saravolatz LD (2005) Nitazoxanide: a new thiazolide antiparasitic agent. Clin Infect Dis 40:1173–1180

    PubMed  CAS  Google Scholar 

  • Fritzler JM, Zhu G (2007) Functional characterization of the acyl-[acyl carrier protein] ligase in theCryptosporidium parvumgiant polyketide synthase. Int J Parasitol 37(3– 4):307–316

    PubMed  CAS  Google Scholar 

  • Galazka J, Striepen B, Ullman B (2006) Adenosine kinase fromCryptosporidium parvum. Mol Biochem Parasitol 149:223–230

    PubMed  CAS  Google Scholar 

  • Gardner MJ, Bishop R, Shah T, de Villiers E P, Carlton JM, Hall N, Ren Q, Paulsen IT, Pain A, Berriman M, Wilson RJ, Sato S, Ralph SA, Mann DJ, Xiong Z, Shallom SJ, Weidman J, Jiang L, Lynn J, Weaver B, Shoaibi A, Domingo AR, Wasawo D, Crabtree J, Wortman JR, Haas B, Angiuoli S V, Creasy TH, Lu C, Suh B, Silva JC, Utterback TR, Feldblyum T V, Pertea M, Allen J, Nierman WC, Taracha EL, Salzberg SL, White OR, Fitzhugh HA, Morzaria S, Venter JC, Fraser CM, Nene V (2005) Genome sequence ofTheileria parva, a b o v i n e p a t h -ogen that transforms lymphocytes. Science 309:134–137

    PubMed  Google Scholar 

  • Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, New-bold C, Davis RW, Fraser CM, Barrell B (2002) Genome sequence of the human malaria parasitePlasmodium fal-ciparum. Nature 419:498–511

    PubMed  CAS  Google Scholar 

  • Hampton JC, Rosario B (1966) The attachment of protozoan parasites to intestinalepithelial cells of the mouse. J Para-sitol 52:939–949

    CAS  Google Scholar 

  • Harth G, Horwitz MA (1999) An inhibitor of exportedMyco-bacterium tuberculosisglutamine synthetase selectively blocks the growth of pathogenic mycobacteria in axenic culture and in human monocytes: extracellular proteins as potential novel drug targets. J Exp Med 189:1425–1436

    PubMed  CAS  Google Scholar 

  • Harth G, Horwitz MA (2003) Inhibition ofMycobacterium tuberculosisglutamine synthetase as a novel antibioticstrategy against tuberculosis: demonstration of efficacy in vivo. Infect Immun 71:456–464

    PubMed  CAS  Google Scholar 

  • Heiges M, Wang H, Robinson E, Aurrecoechea C, Gao X, Kaluskar N, Rhodes P, Wang S, He CZ, Su Y, Miller J, Kraemer E, Kissinger JC (2006) CryptoDB: aCryptosporidiumbioinformat-ics resource update. Nucl Acids Res 34:D419–D422

    PubMed  CAS  Google Scholar 

  • Hemphill A, Mueller J, Esposito M (2006) Nitazoxanide, a broad-spectrum thiazolide anti-infective agent for the treatment of gastrointestinal infections. Expert Opin Pharmacother 7:953–964

    PubMed  CAS  Google Scholar 

  • Hewitt RG, Yiannoutsos CT, Higgs ES, Carey JT, Geiseler PJ, Soave R, Rosenberg R, Vazquez GJ, Wheat LJ, Fass RJ, Antoninievic Z, Walawander AL, Flanigan TP, Bender JF (2000) Paromomycin: no more effective than placebo for treatment of cryptosporidiosis in patients with advanced human immunodeficiency virus infection. AIDS Clinical Trial Group. Clin Infect Dis 31:1084–1092

    PubMed  CAS  Google Scholar 

  • Hijjawi NS, Meloni BP, Ng'anzo M, Ryan UM, Olson ME, Cox PT, Monis PT, Thompson RC (2004) Complete development ofCryptosporidium parvumin host cell-free culture. Int J Parasitol 34:769–777

    PubMed  CAS  Google Scholar 

  • Hijjawi NS, Meloni BP, Ryan UM, Olson ME, Thompson RC (2002) Successful in vitro cultivation ofCryptosporidium andersoni: evidence for the existence of novel extracellular stages in the life cycle and implications for the classification of Cryptosporidium. Int J Parasitol 32:1719–1726

    PubMed  CAS  Google Scholar 

  • Hommer V, Eichholz J, Petry F (2003) Effect of antiretrovi-ral protease inhibitors alone, and in combination with paromomycin, on the excystation, invasion and in vitro development ofCryptosporidium parvum. J Antimicrob Chemother 52:359–364

    PubMed  CAS  Google Scholar 

  • Iseki M (1979)Cryptosporidium felissp. n. (Protozoa: Eimerio-rina) from the domestic cat. Jpn J Parasitol 28:285–307

    Google Scholar 

  • Jervis HR, Merrill TG, Sprinz H (1966) Coccidiosis in the guinea pig small intestine due to aCryptosporidium. A m J Ve t Res 27:408–414

    CAS  Google Scholar 

  • Kadappu KK, Nagaraja MV, Rao PV, Shastry BA (2002) Azithro-mycin as treatment for cryptosporidiosis in human immunodeficiency virus disease. J Postgrad Med 48:179–181

    PubMed  CAS  Google Scholar 

  • Korich DG, Mead JR, Madore MS, Sinclair NA, Sterling CR (1990) Effects of ozone, chlorine dioxide, chlorine, and monochloramine onCryptosporidium parvumoocyst viability. Appl Environ Microbiol 56:1423–1428

    PubMed  CAS  Google Scholar 

  • Koudela B, Modry D (1998) New species ofCryptosporidium(Apicomplexa: Cryptosporidiidae) from lizards. Folia Par-asitol 45:93–100

    Google Scholar 

  • Kubota T, Iinuma Y, Kobayashi J (2006) Cloning of polyketide synthase genes from amphidinolide-producing dinoflag-ellateAmphidiniumsp. Biol Pharm Bull 29:1314–1318

    PubMed  CAS  Google Scholar 

  • LaGier MJ, Tachezy J, Stejskal F, Kutisova K, Keithly JS (2003) Mitochondrial-type iron-sulfur cluster biosynthesis genes (IscS and IscU) in the apicomplexanCryptosporidium parvum. Microbiology 149:3519–3530

    PubMed  CAS  Google Scholar 

  • Levine ND (1961) Protozoan parasites of domestic animals and of man. Burgess, Minneapolis

    Google Scholar 

  • Levine ND (1980) Some corrections of coccidian (Apicompl-exa: Protozoa) nomenclature. J Parasitol 66:830–834

    PubMed  CAS  Google Scholar 

  • Levine ND (1984) Taxonomy and review of the coccidian genusCryptosporidium(protozoa, apicomplexa). J Protozool 31:94–98

    PubMed  CAS  Google Scholar 

  • Levine ND (1985) Phylum II. Apicomplexa Levine, 1970. In: Lee JJ, SH Hunter, EC Bovee (ed.) An illustrated guide to the Protozoa. Allen Press, Lawrence, KS, pp 322–374

    Google Scholar 

  • Lindsay DS, Upton SJ, Owens DS, Morgan UM, Mead JR, Blag-burn BL (2000)Cryptosporidiumandersoni n. sp. (Api-complexa: Cryptosporiidae) from cattle, Bos taurus. J Eukaryot Microbiol 47:91–95

    PubMed  CAS  Google Scholar 

  • Liu C, Vigdorovich V, Kapur V, Abrahamsen MS (1999) A random survey of theCryptosporidium parvumgenome. Infect Immun 67:3960–3969

    PubMed  CAS  Google Scholar 

  • Marshall MM, Naumovitz D, Ortega Y, Sterling CR (1997) Waterborne protozoan pathogens. Clin Microbiol Rev 10:67–85

    PubMed  CAS  Google Scholar 

  • McManus DP, Bowles J (1996) Molecular genetic approaches to parasite identification: their value in diagnostic parasitol-ogy and systematics. Int J Parasitol 26:687–704

    PubMed  CAS  Google Scholar 

  • Meisel JL, Perera DR, Meligro C, Rubin CE (1976) Overwhelming watery diarrhea associated with aCryptosporidiumin an immunosuppressed patient. Gastroenterology 70:1156– 1160

    PubMed  CAS  Google Scholar 

  • Menting JG, Tilley L, Deady LW, Ng K, Simpson RJ, Cowman AF, Foley M (1997) The antimalarial drug, chloroquine, interacts with lactate dehydrogenase fromPlasmodium falciparum. Mol Biochem Parasitol 88:215–224

    PubMed  CAS  Google Scholar 

  • Morgan-Ryan UM, Fall A, Ward LA, Hijjawi N, Sulaiman I, Fayer R, Thompson RC, Olson M, Lal A, Xiao L (2002)Cryptosporidium hominisn. sp. (Apicomplexa: Crypt-osporidiidae) fromHomo sapiens. J Eukaryot Microbiol 49:433–440

    PubMed  Google Scholar 

  • Morgan-Ryan UM, Monis P, Possenti A, Crisanti A, Spano F (2001) Cloning and phylogenetic analysis of the ribosomal internal transcribed spacer-1 (ITS1) of Cryptosporidium wrairi and its relationship toC. parvumgenotypes. Par-assitologia 43:159–163

    CAS  Google Scholar 

  • Nime FA, Burek JD, Page DL, Holscher MA, Yardley JH (1976) Acute enterocolitis in a human being infected with the protozoanCryptosporidium. Gastroenterology 70:592–598

    PubMed  CAS  Google Scholar 

  • O'Donoghue PJ (1995)Cryptosporidiumand cryptosporidiosis in man and animals. Int J Parasitol 25:139–195

    PubMed  Google Scholar 

  • Omoto CK, Toso M, Tang K, Sibley LD (2004) Expressed sequence tag (EST) analysis ofGregarinegametocyst development. Int J Parasitol 34:1265–1271

    PubMed  CAS  Google Scholar 

  • Pain A, Renauld H, Berriman M, Murphy L, Yeats CA, Weir W, Kerhornou A, Aslett M, Bishop R, Bouchier C, Cochet M, Coulson RM, Cronin A, de Villiers E P, Fraser A, Fosker N, Gardner M, Goble A, Griffiths-Jones S, Harris DE, Katzer F, Larke N, Lord A, Maser P, McKellar S, Mooney P, Morton F, Nene V, O'Neil S, Price C, Quail MA, Rabbinowitsch E, Rawlings ND, Rutter S, Saunders D, Seeger K, Shah T, Squares R, Squares S, Tivey A, Walker AR, Woodward J, Dobbelaere DA, Langsley G, Rajandream MA, McKeever D, Shiels B, Tait A, Barrell B, Hall N (2005) Genome of the host-cell transforming parasiteTheileria annulatacompared withT. parva. Science 309:131–133

    PubMed  CAS  Google Scholar 

  • Pande BP, Bhatia BB, Chauhan PP (1972) A new genus and species of cryptosporidiid Coccidia from India. Acta Ve t Acad Sci Hung 22:231–234

    CAS  Google Scholar 

  • Pankiewicz KW, Patterson SE, Black PL, Jayaram HN, Risal D, Goldstein BM, Stuyver LJ, Schinazi RF (2004) Cofactor mimics as selective inhibitors of NAD-dependent inosine monophosphate dehydrogenase (IMPDH) — the major therapeutic target. Curr Med Chem 11:887–900

    PubMed  CAS  Google Scholar 

  • Pankuch GA, Appelbaum PC (2006) Activities of tizoxanide and nitazoxanide compared to those of five other thia-zolides and three other agents against anaerobic species. Antimicrob Agents Chemother 50:1112–1117

    PubMed  CAS  Google Scholar 

  • Perkins ME, Riojas YA, Wu TW, Le Blancq SM (1999) CpABC, aCryptosporidium parvumATP-binding cassette protein at the host-parasite boundary in intracellular stages. Proc Natl Acad Sci USA 96:5734–5739

    PubMed  CAS  Google Scholar 

  • Pfefferkorn ER, Bzik DJ, Honsinger CP (2001)Toxoplasma gon-dii: mechanism of the parasitostatic action of 6-thioxan-thine. Exp Parasitol 99:235–243

    PubMed  CAS  Google Scholar 

  • Pradel G, Hayton K, Aravind L, Iyer LM, Abrahamsen MS, Bonawitz A, Mejia C, Templeton TJ (2004) A multidomain adhesion protein family expressed inPlasmodium falci-parumis essential for transmission to the mosquito. J Exp Med 199:1533–1544

    PubMed  CAS  Google Scholar 

  • Read JA, Wilkinson KW, Tranter R, Sessions RB, Brady RL (1999) Chloroquine binds in the cofactor binding site ofPlasmodium falciparumlactate dehydrogenase. J Biol Chem 274:10213–10218

    PubMed  CAS  Google Scholar 

  • Reduker DW, Speer CA, Blixt JA (1985) Ultrastructure ofCrypt-osporidium parvumoocysts and excysting sporozoites as revealed by high resolution scanning electron microscopy. J Protozool 32:708–711

    PubMed  CAS  Google Scholar 

  • Rein KS, Snyder RV (2006) The biosynthesis of polyketide metabolites by dinoflagellates. Adv Appl Microbiol 59:93–125

    PubMed  CAS  Google Scholar 

  • Riordan CE, Ault JG, Langreth SG, Keithly JS (2003)Crypt-osporidium parvumCpn60 targets a relict organelle. Curr Genet 44:138–147

    PubMed  CAS  Google Scholar 

  • Roberts CW, Roberts F, Henriquez FL, Akiyoshi D, Samuel BU, Richards TA, Milhous W, Kyle D, McIntosh L, Hill GC, Chaudhuri M, Tzipori S, McLeod R (2004) Evidence for mitochondrial-derived alternative oxidase in the apicom-plexan parasiteCryptosporidium parvum: a potential antimicrobial agent target. Int J Parasitol 34:297–308

    PubMed  CAS  Google Scholar 

  • Rochelle PA, Jutras EM, Atwill ER, De Leon R, Stewart MH (1999) Polymorphisms in the beta-tubulin gene ofCryptosporidium parvumdifferentiate between isolates based on animal host but not geographic origin. J Para-sitol 85:986–989

    CAS  Google Scholar 

  • Romero Cabello R, Guerrero LR, Munoz Garcia MR, Geyne Cruz A (1997) Nitazoxanide for the treatment of intestinal protozoan and helminthic infections in Mexico. Trans R Soc Trop Med Hyg 91:701–703

    PubMed  CAS  Google Scholar 

  • Rosales MJ, Cordon GP, Moreno MS, Sanchez CM (2005) Extracellular like-gregarine stages ofCryptosporidium parvum. Acta Trop 95:74–78

    PubMed  CAS  Google Scholar 

  • Rossignol JF (2006) Nitazoxanide in the treatment of acquired immune deficiency syndrome-related cryptosporidiosis: results of the United States compassionate use program in 365 patients. Aliment Pharmacol Ther 24:887–894

    PubMed  CAS  Google Scholar 

  • Rossignol JF, Ayoub A, Ayers MS (2001) Treatment of diarrhea caused byCryptosporidium parvum: a prospective randomized, double-blind, placebo-controlled study of Nita-zoxanide. J Infect Dis 184:103–106

    PubMed  CAS  Google Scholar 

  • Rossignol JF, Maisonneuve H (1984) Nitazoxanide in the treatment of Taenia saginata and Hymenolepis nana infections. Am J Trop Med Hyg 33:511–512

    PubMed  CAS  Google Scholar 

  • Rotte C, Stejskal F, Zhu G, Keithly JS, Martin W (2001) Pyru-vate: NADP+ oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporid-ium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. Mol Biol Evol 18:710–720

    PubMed  CAS  Google Scholar 

  • Ryan UM, Monis P, Enemark HL, Sulaiman I, Samarasinghe B, Read C, Buddle R, Robertson I, Zhou L, Thompson RC, Xiao L (2004) Cryptosporidium suis n. sp. (Apicomplexa: Crypt-osporidiidae) in pigs (Sus scrofa). J Parasitol 90:769–773

    PubMed  CAS  Google Scholar 

  • Ryan UM, Xiao L, Read C, Sulaiman IM, Monis P, Lal AA, Fayer R, Pavlasek I (2003) A redescription of Cryptosporidium galli Pavlasek, 1999 (Apicomplexa: Cryptosporidiidae) from birds. J Parasitol 89:809–813

    PubMed  CAS  Google Scholar 

  • Sibley LD (2004) Intracellular parasite invasion strategies. Science 304:248–253

    PubMed  CAS  Google Scholar 

  • Sitja-Bobadilla A, Padros F, Aguilera C, Alvarez-Pellitero P (2005) Epidemiology of Cryptosporidium molnari in Spanish gilthead sea bream (Sparus aurata L.) and European sea bass (Dicentrarchus labrax L.) cultures: from hatchery to market size. Appl Environ Microbiol 71:131–139

    PubMed  CAS  Google Scholar 

  • Slapeta J, Keithly JS (2004) Cryptosporidium parvum mito-chondrial-type HSP70 targets homologous and heterolo-gous mitochondria. Eukaryot Cell 3:483–494

    PubMed  CAS  Google Scholar 

  • Slavin D (1955) Cryptosporidium meleagridis (sp. nov.). J Comp Pathol 65:262–266

    PubMed  CAS  Google Scholar 

  • Smith H V, Nichols RAB, Grimason AM (2005) Cryptosporid-ium excystation and invasion: getting to the guts of the matter. Trends Parasitol 21:133–142

    PubMed  CAS  Google Scholar 

  • Smith NH, Cron S, Valdez LM, Chappell CL, White AC Jr (1998) Combination drug therapy for cryptosporidiosis in AIDS. J Infect Dis 178:900–903

    PubMed  CAS  Google Scholar 

  • Snyder RV, Gibbs PD, Palacios A, Abiy L, Dickey R, Lopez J V, Rein KS (2003) Polyketide synthase genes from marine dinoflagellates. Mar Biotechnol (NY) 5:1–12

    CAS  Google Scholar 

  • Snyder RV, Guerrero MA, Sinigalliano CD, Winshell J, Perez R, Lopez J V, Rein KS (2005) Localization of polyketide syn-thase encoding genes to the toxic dinoflagellate Karenia brevis. Phytochemistry 66:1767–1780

    PubMed  CAS  Google Scholar 

  • Spano F, Crisanti A (2000) Cryptosporidium parvum: the many secrets of a small genome. Int J Parasitol 30:553–565

    PubMed  CAS  Google Scholar 

  • Spano F, Puri C, Ranucci L, Putignani L, Crisanti A (1997) Cloning of the entire COWP gene of Cryptosporidium parvum and ultrastructural localization of the protein during sexual parasite development. Parasitology 114(Pt 5):427–437

    PubMed  CAS  Google Scholar 

  • Striepen B, Kissinger JC (2004) Genomics meets transgenics in search of the elusive Cryptosporidium drug target. Trends Parasitol 20:355–358

    PubMed  CAS  Google Scholar 

  • Striepen B, Pruijssers AJ, Huang J, Li C, Gubbels MJ, Umejiego NN, Hedstrom L, Kissinger JC (2004) Gene transfer in the evolution of parasite nucleotide biosynthesis. Proc Natl Acad Sci USA 101:3154–3159

    PubMed  CAS  Google Scholar 

  • Striepen B, White MW, Li C, Guerini MN, Malik SB, Logsdon JM Jr., Liu C, Abrahamsen MS (2002) Genetic complementation in apicomplexan parasites. Proc Natl Acad Sci USA 99:6304–6309

    PubMed  CAS  Google Scholar 

  • Strong WB, Nelson RG (2000a) Gene discovery in Cryptosporid-ium parvum: expressed sequence tags and genome survey sequences. Contrib Microbiol 6:92–115

    CAS  Google Scholar 

  • Strong WB, Nelson RG (2000b) Preliminary profile of the Cryptosporidium parvum genome: an expressed sequence tag and genome survey sequence analysis. Mol Biochem Parasitol 107:1–32

    CAS  Google Scholar 

  • Stwora-Wojczyk MM, Kissinger JC, Spitalnik SL, Wojczyk BS (2004) O-glycosylation in Toxoplasma gondii: identification and analysis of a family of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. Int J Parasitol 34:309–322

    PubMed  CAS  Google Scholar 

  • Sulaiman IM, Lal AA, Arrowood MJ, Xiao L (1999) Biallelic polymorphism in the intron region of beta-tubulin gene of Cryptosporidium parasites. J Parasitol 85:154–157

    PubMed  CAS  Google Scholar 

  • Suzuki T, Hashimoto T, Yabu Y, Kido Y, Sakamoto K, Nihei C, Hato M, Suzuki S, Amano Y, Nagai K, Hosokawa T, Mina-gawa N, Ohta N, Kita K (2004) Direct evidence for cyanide-insensitive quinol oxidase (alternative oxidase) in apicomplexan parasite Cryptosporidium parvum: phy-logenetic and therapeutic implications. Biochem Biophys Res Commun 313:1044–1052

    PubMed  CAS  Google Scholar 

  • Tekos A, Prodromaki E, Papadimou E, Pavlidou D, Tsambaos D, Drainas D (2003) Aminoglycosides suppress tRNA processing in human epidermal keratinocytes in vitro. Skin Pharmacol Appl Skin Physiol 16:252–258

    PubMed  CAS  Google Scholar 

  • Templeton TJ, Iyer LM, Anantharaman V, Enomoto S, Abra-hante JE, Subramanian GM, Hoffman SL, Abrahamsen MS, Aravind L (2004a) Comparative analysis of apicomplexa and genomic diversity in eukaryotes. Genom Res 14:1686–1695

    CAS  Google Scholar 

  • Templeton TJ, Lancto CA, Vigdorovich V, Liu C, London NR, Hadsall KZ, Abrahamsen MS (2004b) The Cryptosporidium oocyst wall protein is a member of a multigene family and has a homolog in Toxoplasma. Infect Immun 72:980–987

    CAS  Google Scholar 

  • Tetley L, Brown SM, McDonald V, Coombs GH (1998) Ultrastructural analysis of the sporozoite of Cryptosporid-ium parvum. Microbiology 144 (Pt 12):3249–3255

    PubMed  CAS  Google Scholar 

  • Thompson RC, Olson ME, Zhu G, Enomoto S, Abrahamsen MS, Hijjawi NS (2005) Cryptosporidium and cryptosporidiosis. Adv Parasitol 59:77–158

    PubMed  CAS  Google Scholar 

  • Tosini F, Agnoli A, Mele R, Gomez Morales MA, Pozio E (2004) A new modular protein of Cryptosporidium parvum, w i t h ricin B and LCCL domains, expressed in the sporozoite invasive stage. Mol Biochem Parasitol 134:137–147

    PubMed  CAS  Google Scholar 

  • Triffitt MJ (1925) Observations on two new species of coccidia parasitic in snakes. Protozoology 1:19–26

    Google Scholar 

  • Tyzzer EE (1907) A sporozoan found in the peptic glands of the common mouse. Proc Soc Exp Biol Med 5:12–13

    Google Scholar 

  • Tyzzer EE (1912) Cryptosporidium parvum (sp. nov.), a coccid-ium found in the small intestine of the common mouse. Arch Protisenkd 26:394–412

    Google Scholar 

  • Tzipori S (1998) Cryptosporidiosis: laboratory investigations and chemotherapy. Adv Parasitol 40:187–221

    PubMed  CAS  Google Scholar 

  • Tzipori S, Ward H (2002) Cryptosporidiosis: biology, patho-genesis and disease. Microbes Infect 4:1047–1058

    PubMed  Google Scholar 

  • Umemiya R, Fukuda M, Fujisaki K, Matsui T (2005) Electron microscopic observation of the invasion process of Crypt-osporidium parvum in severe combined immunodeficiency mice. J Parasitol 91:1034–1039

    PubMed  Google Scholar 

  • Upton SJ (2000) Suborder Eimeriorina Leger, 1911. In: Lee JJ, Leedale GF, Bradbury P (ed) The Illustrated Guide to the Protozoa, 2nd edn. Society of Protozoologists, Allen Press, Lawrence, KS, USA

    Google Scholar 

  • Vetterling JM, Jervis HR, Merrill TG, Sprinz H (1971) Crypt-osporidium wrairi sp. n. from the guinea pig Cavia porcellus, with an emendation of the genus. J Protozool 18:243–247

    PubMed  CAS  Google Scholar 

  • White AC Jr (2003) Nitazoxanide: an important advance in anti-parasitic therapy. Am J Trop Med Hyg 68:382–383

    PubMed  Google Scholar 

  • Widmer G (2004) Population genetics of Cryptosporidium par-vum. Trends Parasitol 20:3–6 (discussion 6)

    PubMed  Google Scholar 

  • Widmer G, Tchack L, Chappell CL, Tzipori S (1998) Sequence polymorphism in the beta-tubulin gene reveals heterogeneous and variable population structures in Cryptosporidium parvum. Appl Environ Microbiol 64:4477–4481

    PubMed  CAS  Google Scholar 

  • Xiao L, Fayer R, Ryan U, Upton SJ (2004) Cryptosporidium taxonomy: recent advances and implications for public health. Clin Microbiol Rev 17:72–97

    PubMed  Google Scholar 

  • Xiao L, Limor J, Morgan UM, Sulaiman IM, Thompson RC, Lal AA (2000a) Sequence differences in the diagnostic target region of the oocyst wall protein gene of Cryptosporidium parasites. Appl Environ Microbiol 66:5499–5502

    CAS  Google Scholar 

  • Xiao L, Morgan UM, Fayer R, Thompson RC, Lal AA (2000b) Cryptosporidium systematics and implications for public health. Parasitol Today 16:287–292

    CAS  Google Scholar 

  • Xu P, Widmer G, Wang Y, Ozaki LS, Alves JM, Serrano MG, Puiu D, Manque P, Akiyoshi D, Mackey AJ, Pearson WR, Dear PH, Bankier AT, Peterson DL, Abrahamsen MS, Kapur V, Tzipori S, Buck GA (2004) The genome of Cryptosporid-ium hominis. Nature 431:1107–1112

    PubMed  CAS  Google Scholar 

  • Zapata F, Perkins ME, Riojas YA, Wu TW, Le Blancq SM (2002) The Cryptosporidium parvum ABC protein family. Mol Biochem Parasitol 120:157–161

    PubMed  CAS  Google Scholar 

  • Zhu G (2004) Current progress in the fatty acid metabolism in Cryptosporidium parvum. J Eukaryot Microbiol 51:381–388

    PubMed  CAS  Google Scholar 

  • Zhu G, Keithly JS, Philippe H (2000a) What is the phylogenetic position of Cryptosporidium? Int J Syst Evol Microbiol 50 (Pt 4):1673–1681

    CAS  Google Scholar 

  • Zhu G, LaGier MJ, Stejskal F, Millership JJ, Cai X, Keithly JS (2002) Cryptosporidium parvum: the first protist known to encode a putative polyketide synthase. Gene 298:79–89

    PubMed  CAS  Google Scholar 

  • Zhu G, Li Y, Cai X, Millership JJ, Marchewka MJ, Keithly JS (2004) Expression and functional characterization of a giant Type I fatty acid synthase (CpFAS1) gene from Cryptosporidium parvum. Mol Biochem Parasitol 134: 127–135

    PubMed  CAS  Google Scholar 

  • Zhu G, Marchewka MJ, Keithly JS (2000b) Cryptosporidium parvum appears to lack a plastid genome. Microbiology 146(Pt 2):315–321

    CAS  Google Scholar 

  • Zhu G, Marchewka MJ, Woods KM, Upton SJ, Keithly JS (2000c) Molecular analysis of a Type I fatty acid synthase in Cryptosporidium parvum. Mol Biochem Parasitol 105: 253–260

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhu, G., Enomoto, S., Fritzler, J.M., Abrahamsen, M.S., Templeton, T.J. (2009). Cryptosporidium . In: Nene, V., Kole, C. (eds) Genome Mapping and Genomics in Animal-Associated Microbes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74042-1_5

Download citation

Publish with us

Policies and ethics