Skip to main content

Part of the book series: Genome Mapping Genomics Animals ((MAPPANIMAL,volume 1))

Abstract

Mosquitoes have a significant global impact on human health, yet only a small number of the approximately 3,500 species are competent vectors for transmitting diseases. This has driven interest in employing genetic tools to increase our understanding of mosquito/pathogen interactions, as this may lead to novel control strategies for mosquito-borne diseases. Here I provide an overview of genetic and physical mapping efforts for mosquitoes, with an emphasis on two major vector species: Aedes aegypti, the yellow fever and dengue fever vector, and Anopheles gambiae, the primary vector for malaria in sub-Saharan Africa. In addition, both species have been subjected to whole-genome shotgun sequencing efforts. Genome information for these and for ongoing mosquito genome projects is available through VectorBase (http://www.vectorbase.org), a web-based repository for information on invertebrate vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson JR, Grimstad PR, Severson DW (2001) Chromosomal evolution among six mosquito species (Diptera: Culicidae) based on shared restriction fragment length polymorphisms. Mol Phylogenet Evol 20:316–321

    Article  PubMed  CAS  Google Scholar 

  • Anderson JR, Schneider JR, Grimstad PR, Severson DW (2005) Quantitative genetics of vector competence for La Crosse virus and body size in Ochlerotatus hendersoni and Ochlerotatus triseriatus interspecific hybrids. Genetics 169:1529–1539

    Article  PubMed  CAS  Google Scholar 

  • Anderson JR, Schneider JR, Grimstad PR, Severson DW (2006) Identification of quantitative trait loci for larval morphological traits in interspecific hybrids of Ochlerotatus triseriatus and Ochlerotatus hendersoni (Diptera: Culicidae). Genetica 127:163–175

    Article  PubMed  CAS  Google Scholar 

  • Antolin MF, Bosio CF, Cotton J, Sweeney W, Strand MR, Black WC IV (1996) Intensive linkage mapping in a wasp (Bracon hebetor) and a mosquito (Aedes aegypti) with single-strand conformation polymorphism analysis of random amplified polymorphic DNA markers. Genetics 143:1727–1738

    PubMed  CAS  Google Scholar 

  • Arcà B, Lombardo F, Valenzuela JG, Francischetti IMB, Marinotti O, Coluzzi M, Ribeiro JMC (2005) An updated catalogue of salivary gland transcripts in the adult female mosquito, Anopheles gambiae. J Exp Biol 208:3971–3986

    Article  PubMed  Google Scholar 

  • Basten CJ, Weir BS, Zeng Z-B (1997) QTL Cartographer: A Reference Manual and Tutorial for QTL Mapping. Department of Statistics, North Carolina State University, Raleigh, NC, USA

    Google Scholar 

  • Basten CJ, Weir BS, Zeng Z-B (2002) QTL Cartographer. Department of Statistics, North Carolina State University, Raleigh, NC, USA

    Google Scholar 

  • Beavis WD (1994) The power and deceit of QTL experiments: lessons learned from comparative QTL studies. In: Wilkinson DB (ed) Proc Annu Corn Sorghum Ind Res Conf, 49th, Chicago, IL. Am Seed Trade Assoc, Washington, DC, USA, pp 250–266

    Google Scholar 

  • Beerntsen BT, Severson DW, Klinkhammer JA, Kassner VA, Christensen BM (1995) Aedes aegypti: a quantitative trait locus (QTL) influencing filarial worm intensity is linked to QTL for susceptibility to other mosquito-borne pathogens. Exp Parasitol 81:355–362

    Article  PubMed  CAS  Google Scholar 

  • Bennett KE, Beaty BJ, Black WC IV (2005a) Selection of D2S3, an Aedes aegypti (Diptera: Culicidae) strain with high oral susceptibility to dengue 2 virus and D2MEB, a strain with a midgut barrier to dengue 2 escape. J Med Entomol 42:110–119

    Article  PubMed  Google Scholar 

  • Bennet KE, Flick D, Fleming KH, Jochim R, Beaty BJ, Black WC IV (2005b) Quantitative trait loci that control dengue-2 virus dissemination in the mosquito Aedes aegypti. Genetics 170:185–194

    Article  CAS  Google Scholar 

  • Biessman H, Nguyen QK, Le D, Walter MF (2005) Microarray-based survey of a subset of putative olfactory genes in the mosquito Anopheles gambiae. Insect Mol Biol 14:575–589

    Article  CAS  Google Scholar 

  • Black WC IV (1993) PCR with arbitrary primers: approach with care. Insect Mol Biol 2:1–6

    PubMed  CAS  Google Scholar 

  • Black WC IV, Rai KS (1988) Genome evolution in mosquitoes: intraspecific and interspecific variation in repetitive DNA amounts and organization. Genet Res Camb 51:185–196

    Google Scholar 

  • Bosio CF, Beaty BJ, Black WC IV (1998) Quantitative genetics of vector competence for dengue-2 virus in Aedes aegypti. Am J Trop Med Hyg 59:965–970

    PubMed  CAS  Google Scholar 

  • Bosio CF, Fulton RE, Salasek ML, Beaty BJ, Black WC IV (2000) Quantitative trait loci that control vector competence for dengue-2 virus in the mosquito Aedes aegypti. Genetics 156:687–698

    PubMed  CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic map in man using restriction fragment polymorphisms. Am J Hum Genet 32:314–331

    PubMed  CAS  Google Scholar 

  • Brown SE, Menninger J, Difillipantonio M, Beaty BJ, Ward DC, Knudson DL (1995) Toward a physical map of Aedes aegypti. Insect Mol Biol 4:161–167

    PubMed  CAS  Google Scholar 

  • Brown SE, Severson DW, Smith LA, Knudson DL (2001) Integration of the Aedes aegypti mosquito genetic linkage and physical maps. Genetics 157:1299–1305

    PubMed  CAS  Google Scholar 

  • Bullini L, Coluzzi M (1974) Electrophoretic studies on gene-enzyme systems in mosquitoes. WHO/VBC/74.483

    Google Scholar 

  • Chambers EW, Lovin DD, Severson DW (2003) Utility of comparative anchor-tagged sequences as physical anchors for comparative genome analysis among the Culicidae. Am J Trop Med Hyg 69:98–104

    PubMed  CAS  Google Scholar 

  • Chambers EW, Meece JK, McGowan JA, Lovin DD, Hemme RR, Chadee DD, McAbee K, Brown SE, Knudson DL, Severson DW (2007) Microsatellite isolation and linkage group identification in the yellow fever mosquito Aedes aegypti. J Hered 98:202–210

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Wang J, Liang P, Karsay-Klein M, James AA, Brazeau, Yan G (2004) Microarray analysis for identification of Plasmodium-refractoriness candidate genes in mosquitoes. Genome 47:1061–1070

    Article  PubMed  CAS  Google Scholar 

  • Christophers SR (1960) Aedes aegypti (L.) The Yellow Fever Mosquito: Its Life History, Bionomics and Structure. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Christophides GK (2005) Transgenic mosquitoes and malaria transmission. Cell Microbiol 7:325–333

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Coker WZ (1958) The inheritance of DDT resistance in Aedes aegypti. Ann Trop Med Parasitol 52:443–455

    PubMed  CAS  Google Scholar 

  • Collins FH, Sakai RK, Vernick KD, Paskewitz S, Seeley DC, Miller LH, Collins WE, Campbell CC, Gwadz RW (1986) Genetic selection of a Plasmodium-refractory strain of the malaria vector Anopheles gambiae. Science 234:607–610

    Article  PubMed  CAS  Google Scholar 

  • Coluzzi M, Sabatini A, della Torre A, Di Deco MA, Petrarca V (2002) A polytene chromosome analysis of the Anopheles gambiae species complex. Science 298:1415–1418

    Article  PubMed  CAS  Google Scholar 

  • Craig GB Jr, Hickey WA (1967) Genetics of Aedes aegypti. In: Wright JW, Pal R (eds) Genetics of Insect Vectors of Disease. Elsevier, New York, pp 67–131

    Google Scholar 

  • Curtis CF, Graves PM (1983) Genetic variation in the ability of insects to transmit filariae, trypanosomes, and malarial parasites. In: Harris KF (ed) Currents Topics in Vector Research, vol 1. Praeger, New York, pp 31–62

    Google Scholar 

  • Dana AN, Hong YS, Kern MK, Hillenmeyer ME, Harker BW, Lobo NF, Hogan JR, Romans P, Collins FH (2005) Gene expression patterns associated with blood-feeding in the malaria mosquito Anopheles gambiae. BMC Genom 6:5

    Article  CAS  Google Scholar 

  • David J-P, Strode C, Vontas J, Nikou D, Vaughan A, Pignatelli PM, Louis C, Hemingway J, Ranson H (2005) The Anopheles gambiae detoxification chip: a highly specific microarray to study metabolic-based insecticide resistance in malaria vectors. Proc Natl Acad Sci U S A 102:4080–4084

    Article  PubMed  CAS  Google Scholar 

  • della Torre A, Favia G, Mariotti G, Coluzzi M, Mathiopoulos KD (1996) Physical map of the malaria vector Anopheles gambiae. Genetics 143:1307–1311

    PubMed  CAS  Google Scholar 

  • Dimopoulos G, Zheng L, Kumar V, della Torre A, Kafatos FC, Louis K (1996) Integrated genetic map of Anopheles gambiae: use of RAPD polymorphisms for genetic, cytogenetic and STS landmarks. Genetics 143:953–960

    PubMed  CAS  Google Scholar 

  • Dimopoulos G, Christophides GK, Meister S, Schultz J, White KP, Barillas-Mury C, Kafatos FC (2002) Genome expression analysis of Anopheles gambiae: responses to injury, bacterial challenge, and malaria infection. Proc Natl Acad Sci U S A 99:8814–8819

    Article  PubMed  CAS  Google Scholar 

  • Dong Y, Aguilar R, Xi Z, Warr E, Mongin E, Dimopoulos G (2006) Anopheles gambiae immune responses to human and rodent Plasmodium parasite species. PLoS Pathog 2:e52

    Google Scholar 

  • Fagerberg AJ, Fulton RE, Black WC IV (2001) Microsatellite loci are not abundant in all arthropod genomes: analyses in the hard tick, Ixodes scapularis and the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 10:225–236

    Article  PubMed  CAS  Google Scholar 

  • Favia G, Dimopoulos G, Louis C (1994) Analysis of the Anopheles gambiae genome using RAPD markers. Insect Mol Biol 3:149–157

    PubMed  CAS  Google Scholar 

  • Ferdig MT, Taft AS, Severson DW, Christensen BM (1998) Development of a comparative genetic linkage map for Armigeres subalbatus using Aedes aegypti RFLP markers. Genome Res 8:41–47

    PubMed  CAS  Google Scholar 

  • Fulton RE, Salasek ML, DuTeau NM, Black WC IV (2001) SSCP analysis of cDNA markers provides a dense linkage map of the Aedes aegypti genome. Genetics 158:715–726

    PubMed  CAS  Google Scholar 

  • Gillies MT, De Meillon B (1968) The Anophelinae of Africa South of the Sahara, 2nd edn. South African Institute for Medical Research, Johannesburg, South Africa

    Google Scholar 

  • Gomez-Machorro C, Bennett KE, del Lourdes Munoz M, Black WC IV (2004) Quantitative trait loci affecting dengue midgut infection barriers in an advanced intercross line of Aedes aegypti. Insect Mol Biol 13:637–648

    Article  PubMed  CAS  Google Scholar 

  • Gorman MJ, Severson DW, Cornel AJ, Collins FH, Paskewitz SM (1997) Mapping a quantitative trait locus involved in melanotic encapsulation of foreign bodies in the malaria vector, Anopheles gambiae. Genetics 146:965–971

    PubMed  CAS  Google Scholar 

  • Gorrochotegui-Escalante N, Lozano-Fuentes S, Bennett KE, Molina-Cruz A, Beaty BJ, Black WC IV (2005) Association mapping of segregating sites in the early trypsin gene and susceptibility to dengue-2 virus in the mosquito Aedes aegypti. Insect Biochem Mol Biol 35:771–788

    Article  PubMed  CAS  Google Scholar 

  • Graham DH, Holmes JL, Beaty BJ, Black WC IV (2003) Quantitative trait loci conditioning transovarial transmission of La Crosse virus in the eastern treehole mosquito, Ochlerotatus triseriatus. Insect Mol Biol 12:307–318

    Article  PubMed  CAS  Google Scholar 

  • Graham DH, Holmes JL, Black WC IV (2004) Identification of quantitative trait loci affecting sex determination in the eastern treehole mosquito (Ochlerotatus triseriatus). J Hered 95:35–45

    Article  PubMed  CAS  Google Scholar 

  • Gubler DJ (1998) Resurgent vector-borne diseases as a global health problem. Emerg Infect Dis 4:442–450

    Article  PubMed  CAS  Google Scholar 

  • Gubler DJ, Nalim S, Tan R, Saipan H, Sulianti Saroso J (1979) Variation in susceptibility to oral infection with dengue viruses among geographic strains of Aedes aegypti. Am J Trop Med Hyg 28:1045–1052

    PubMed  CAS  Google Scholar 

  • Hardy JL, Houk EJ, Kramer LD, Reeves WC (1983) Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu Rev Entomol 28:229–262

    Article  PubMed  CAS  Google Scholar 

  • Haridi AM (1972) Inheritance of DDT resistance in species A and B of the Anopheles gambiae complex. Bull World Health Organ 47:619–626

    PubMed  CAS  Google Scholar 

  • Hennig W (1981) Insect Physiology. Translated by Pont AC (ed) Wiley, Chichester, UK

    Google Scholar 

  • Holt RA, Mani Subramanian G, Halpern A, Sutton GG, Charlab R, et al (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129–149

    Article  PubMed  CAS  Google Scholar 

  • Huber K, Mousson L, Rodhain F, Failloux A-B (1999) Microsatellite sequences as markers for population genetic studies of the mosquito Aedes aegypti, the vector of dengue virus. Am J Trop Med Hyg 61:1001–1003

    PubMed  CAS  Google Scholar 

  • Huber K, Mousson L, Rodhain F, Failloux A-B (2001) Isolation and variability of polymorphic microsatellite loci in Aedes aegypti, the vector of dengue viruses. Mol Ecol Notes 1:219–222

    Article  CAS  Google Scholar 

  • Hunt RH (1987) Location of genes on chromosome arms in the Anopheles gambiae group of species and their correlation to linkage data for other anopheline mosquitoes. Med Vet Entomol 1:81–88

    PubMed  CAS  Google Scholar 

  • Jacobs-Lorena M (2003) Interrupting malaria transmission by genetic manipulation of anopheline mosquitoes. J Vector Borne Dis 40:73–77

    PubMed  CAS  Google Scholar 

  • James AA (2005) Gene drive systems in mosquitoes: rules of the road. Trends Parasitol 21:64–67

    Article  PubMed  CAS  Google Scholar 

  • Kilama WL, Craig GB Jr (1969) Monofactorial inheritance of susceptibility to Plasmodium gallinaceum in Aedes aegypti. Ann Trop Med Parasitol 63:419–432

    PubMed  CAS  Google Scholar 

  • Kitzmiller J, Mason GF (1967) Formal genetics of anophelines. In: Wright JW, Pal R (eds) Genetics of Insect Vectors of Disease. Elsevier, New York, pp 3–15

    Google Scholar 

  • Krzywinski J, Grushko OG, Besansky NJ (2006) Analysis of the complete mitochondrial DNA from Anopheles funestus: an improved dipteran mitochondrial genome annotation and a temporal dimension of mosquito evolution. Mol Phylogenet Evol 39:417–423

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Christophides GK, Cantera R, Charles B, Soo Han Y, Meister S, Dimopoulos G, Kafatos FC, Barillas-Mury C (2003) The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae. Proc Natl Acad Sci U S A 100:14139–14144

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly M, Lincoln S, Newberg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lawson D, Arensburger P, Atkinson P, Besansky NJ, Bruggner RV, et al (2007) VectorBase: a home for invertebrate vectors of human pathogens. Nucleic Acids Res 35:D503–D505

    Article  PubMed  CAS  Google Scholar 

  • Macdonald WW (1962) The genetic basis of susceptibility to infection with semi-periodic Brugia malayi in Aedes aegypti. Ann Trop Med Parasitol 56:373–382

    Google Scholar 

  • Macdonald WW, Ramachandran CP (1965) The influence of the gene f m (filarial susceptibility, Brugia malayi) on the susceptibility of Aedes aegypti to seven strains of Brugia, Wuchereria and Dirofilaria. Ann Trop Med Parasitol 59:64–73

    PubMed  CAS  Google Scholar 

  • Manly KF, Cudmore JR, Meer JM (2001) Map Manager QTX: cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  • Marinotti O, Nguyen QK, Calvo E, James AA, Ribeiro JMC (2005) Microarray analysis of genes showing variable expression following a blood meal in Anopheles gambiae. Insect Mol Biol 14:365–373

    Article  PubMed  CAS  Google Scholar 

  • Matthews TC, Munstermann LE (1994) Chromosomal repatterning and linkage group conservation in mosquito karyotypic evolution. Evolution 48:146–154

    Article  Google Scholar 

  • Meister S, Kanzok SM, Zheng X-I, Luna C, Li T-R, Hoa NT, Clayton JR, White KP, Kafatos FC, Christophides GK, Zheng L (2005) Immune signaling pathways regulating bacterial and malaria parasite infection of the mosquito Anopheles gambiae. Proc Natl Acad Sci U S A 102:11420–11425

    Article  PubMed  CAS  Google Scholar 

  • Menge DM, Zhong D, Guda T, Gouagna L, Githure J, Beier J, Yan G (2006) Quantitative trait loci controlling refractoriness to Plasmodium falciparum in natural Anopheles gambiae mosquitoes from a malaria-endemic region in western Kenya. Genetics 173:235–241

    Article  PubMed  CAS  Google Scholar 

  • Miller BR, Mitchell CJ (1991) Genetic selection of a flavivirus-refractory strain of the yellow fever mosquito Aedes aegypti. Am J Trop Med Hyg 45:399–407

    PubMed  CAS  Google Scholar 

  • Mori A, Severson DW, Christensen BM (1999) Comparative linkage maps for the mosquitoes, Culex pipiens and Aedes aegypti, based on common RFLP loci. J Hered 90:160–164

    Article  PubMed  CAS  Google Scholar 

  • Mori A, Tomita T, Hidoh O, Kono Y, Severson DW (2001) Comparative map development and identification of an autosomal locus for insensitive acetylesterase-mediated insecticide resistance in Culex tritaeniorhynchus. Insect Mol Biol 10:197–204

    Article  PubMed  CAS  Google Scholar 

  • Munstermann LE (1990) Linkage map of the yellow fever mosquito, Aedes aegypti. In: O’Brien SJ (ed) Genetic Maps: Locus Maps of Complex Genomes. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 3.179–3.183

    Google Scholar 

  • Munstermann LE, Conn JE (1997) Systematics of mosquito disease vectors (Diptera, Culicidae): impact of molecular biology and cladistic analysis. Annu Rev Entomol 42:351–369

    Article  PubMed  CAS  Google Scholar 

  • Munstermann LE, Craig GB Jr (1979) Genetics of Aedes aegypti. J Hered 70:291–296

    Google Scholar 

  • Mutebi J-P, Black WC IV, Bosio CF, Sweeney WP Jr, Craig GB Jr (1997) Linkage map for the Asian tiger mosquito [Aedes (Stegomyia) albopictus] based on SSCP analysis of RAPD markers. J Hered 88:489–494

    PubMed  CAS  Google Scholar 

  • Narang S, Seawright JA (1982) Linkage relationships and genetic mapping in Culex and Anopheles. In: Steiner WWM, Tabachnick WJ, Rai KS, Narang S (eds) Recent Developments in the Genetics of Insect Disease Vectors. Stipes, Champaign, IL, pp 231–289

    Google Scholar 

  • Nene V, Wortman JR, Lawson D, Galagan J, Haas B, et al (2007) Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316:1718–1723

    Article  PubMed  CAS  Google Scholar 

  • Niaré O, Markianos K, Volz J, Oduol F, Touré A, et al (2002) Genetic loci affecting resistance to human malaria parasites in a West African mosquito vector population. Science 298:213–216

    Article  PubMed  CAS  Google Scholar 

  • Phillips RS (2001) Current status of malaria and potential for control. Clin Microbiol Rev 14:208–226

    Article  PubMed  CAS  Google Scholar 

  • Rai KS, Black WC IV (1999) Mosquito genomes: structure, organization, and evolution. Adv Genet 41:1–33

    Article  PubMed  CAS  Google Scholar 

  • Ranson H, Jensen B, Wang X, Prapanthadara L, Hemingway J, Collins FH (2000) Genetic mapping of two loci affecting DDT resistance in the malaria vector Anopheles gambiae. Insect Mol Biol 9:499–507

    Article  PubMed  CAS  Google Scholar 

  • Ranson H, Paton MG, Jensen B, McCarroll L, Vaughan A, Hogan JR, Hemingway J, Collins FH (2004) Genetic mapping of genes conferring permethrin resistance in the malaria vector, Anopheles gambiae. Insect Mol Biol 13:379–386

    Article  PubMed  CAS  Google Scholar 

  • Riehle MM, Markianos K, Niaré O, Xu J, Li J, et al (2006) Natural malaria infection in Anopheles gambiae is regulated by a single genomic control region. Science 312:577–579

    Article  PubMed  CAS  Google Scholar 

  • Romans P, Seeley DC, Kew Y, Gwadz RW (1991) Use of a restriction fragment length polymorphism (RFLP) as a genetic marker in crosses of Anopheles gambiae (Diptera: Culicidae): independent assortment of a diphenol oxidase RFLP and an esterase locus. J Med Entomol 28:147–151

    PubMed  CAS  Google Scholar 

  • Romans P, Black WC IV, Sakai RK, Gwadz RW (1999) Linkage of a gene causing malaria refractoriness to Diphenol oxidase-A2 on chromosome 3 of Anopheles gambiae. Am J Trop Med Hyg 60:22–29

    PubMed  CAS  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, et al (1988) Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Vargas I, Travanty EA, Keene KM, Franz AW, Beaty BJ, Blair CD, Olson KE (2004) RNA interference, arthropod-borne viruses, and mosquitoes. Virus Res 102:65–74

    Article  PubMed  CAS  Google Scholar 

  • Sanders HR, Evans AM, Ross LK, Gill SS (2003) Blood meal induces global changes in midgut gene expression in the disease vector, Aedes aegypti. Insect Biochem Mol Biol 33:1105–1122

    Article  PubMed  CAS  Google Scholar 

  • Sanders HR, Foy BD, Evans AM, Ross LS, Beaty BJ, Olson KE, Gill SS (2005) Sindbis virus induces transport processes and alters expression of innate immunity pathway genes in the midgut of the disease vector, Aedes aegypti. Insect Biochem Mol Biol 35:1293–1307

    Article  PubMed  CAS  Google Scholar 

  • Seaton G, Haley CS, Knott SA, Kearsey M, Visscher PM (2002) QTL Express: mapping quantitative trait loci in simple and complex pedigrees. Bioinformatics 18:339–340

    Article  PubMed  CAS  Google Scholar 

  • Severson DW, Black WC IV (2005) Genome evolution in mosquitoes. In: Marquardt WC (ed) Biology of Disease Vectors, 2nd edn. Elsevier Academic, Amsterdam, pp 449–463

    Google Scholar 

  • Severson DW, Mori A, Zhang Y, Christensen BM (1993) Linkage map for Aedes aegypti using restriction fragment length polymorphisms. J Hered 84:241–247

    PubMed  CAS  Google Scholar 

  • Severson DW, Mori A, Zhang Y, Christensen BM (1994a) The suitability of restriction fragment length polymorphism markers for evaluating genetic diversity among and synteny between mosquito species. Am J Trop Med Hyg 50:425–432

    PubMed  CAS  Google Scholar 

  • Severson DW, Mori A, Zhang Y, Christensen BM (1994b) Chromosomal mapping of two loci affecting filarial worm susceptibility in Aedes aegypti. Insect Mol Biol 3:67–72

    PubMed  CAS  Google Scholar 

  • Severson DW, Mori A, Kassner VA, Christensen BM (1995a) Comparative linkage maps for the mosquitoes, Aedes albopictus and Aedes aegypti, based on common RFLP loci. Insect Mol Biol 4:41–45

    PubMed  CAS  Google Scholar 

  • Severson DW, Thathy V, Mori A, Zhang Y, Christensen BM (1995b) Restriction fragment length polymorphism mapping of quantitative trait loci for malaria parasite susceptibility in the mosquito Aedes aegypti. Genetics 139:1711–1717

    PubMed  CAS  Google Scholar 

  • Severson DW, Brown SE, Knudson DL (2001) Genetic and physical mapping in mosquitoes: molecular approaches. Annu Rev Entomol 46:183–219

    Article  PubMed  CAS  Google Scholar 

  • Severson DW, Meece JK, Lovin DD, Saha G, Morlais I (2002) Linkage map organization of expressed sequence tags and sequence tagged sites in the mosquito, Aedes aegypti. Insect Mol Biol 11:371–378

    Article  PubMed  CAS  Google Scholar 

  • Severson DW, deBruyn B, Lovin DD, Brown SE, Knudson DL, Morlais I (2004) Comparative genome analysis of the yellow fever mosquito Aedes aegypti with Drosophila melanogaster and the malaria vector mosquito Anopheles gambiae. J Hered 95:103–113

    Article  PubMed  CAS  Google Scholar 

  • Sharakhov IV, Sharakhova MV, Mbogo CM, Loekemoer LL, Yan G (2001) Linear and spatial organization of polytene chromosomes of the African malaria mosquito Anopheles funestus. Genetics 159:211–218

    PubMed  CAS  Google Scholar 

  • Sharakhov IV, Serazin AC, Grushko OG, Dana A, Lobo N, et al (2002) Inversions and gene order shuffling in Anopheles gambiae and A. funestus. Science 298:182–185

    Article  PubMed  CAS  Google Scholar 

  • Sharakhov I, Braginets O, Grushko O, Cohuet A, Guelbeogo WM, Boccolini D, Weill M, Constantini C, Sagnon N’F, Fontenille D, Yan G, Besansky NJ (2004) A microsatellite map of the African human malaria vector Anopheles funestus. J Hered 95:29–34

    Article  PubMed  CAS  Google Scholar 

  • Sharakhov MV, Xia A, McAlister, Sharakhov IV (2006) A standard cytogenetic photomap for the mosquito Anopheles stephensi (Diptera: Culicidae): application for physical mapping. J Med Entomol 43:861–866

    Article  PubMed  Google Scholar 

  • Sim C, Hong YS, Vanlandingham DL, Harker BW, Christophides GK, Kafatos FC, Higgs S, Collins FH (2005) Modulation of Anopheles gambiae gene expression in response to o’nyong-nyong virus infection. Insect Mol Biol 14:475–481

    Article  PubMed  CAS  Google Scholar 

  • Slotman M, della Torre A, Powell JR (2004) The genetics of inviability and male sterility in hybrids between Anopheles gambiae and An. arabiensis. Genetics 167:275–287

    Article  PubMed  CAS  Google Scholar 

  • Slotman M, della Torre A, Powell JR (2005) Female sterility in hybrids between Anopheles gambiae and A. arabiensis, and the causes of Haldane’s rule. Evolution 59:1016–1026

    PubMed  Google Scholar 

  • Strode C, Steen K, Ortelli G, Ranson H (2006) Differential expression of the detoxification genes in the different life stages of the malaria vector Anopheles gambiae. Insect Mol Biol 15:523–530

    Article  PubMed  CAS  Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 16:6463–6471

    Article  Google Scholar 

  • Thathy V, Severson DW, Christensen BM (1994) Reinterpretation of the genetics of susceptibility of Aedes aegypti to Plasmodium gallinaceum. J Parasitol 80:705–712

    Article  PubMed  CAS  Google Scholar 

  • Thomasová D, Ton LQ, Copley RR, Zdobnov EM, Wang X, Hong YS, Sim C, Bork P, Kafatos FC, Collins FH (2002) Comparative genomic analysis in the region of a major Plasmodium-refractoriness locus of Anopheles gambiae. Proc Natl Acad Sci U S A 99:8179–8184

    Article  PubMed  CAS  Google Scholar 

  • Trebatoski AM, Craig GB Jr (1969) Genetics of an esterase in Aedes aegypti. Biochem Genet 3:383–392

    Article  PubMed  CAS  Google Scholar 

  • Turner TL, Hahn MW, Nuzhdin SV (2005) Genomic islands of speciation in Anopheles gambiae. PLoS Biol 3:e285

    Google Scholar 

  • Vernick KD, Fujioka H, Seeley DC, Tandler B, Aikawa M, Miller LH (1995) Plasmodium gallinaceum: a refractory mechanism of ookinete killing in the mosquito, Anopheles gambiae. Exp Parasitol 80:583–595

    Article  PubMed  CAS  Google Scholar 

  • Vontas J, Blass C, Koutsos AC, David J-P, Kafatos FC, Louis C, Hemingway J, Christophides GK, Ransons H (2005) Gene expression in insecticide resistant and susceptible Anopheles gambiae strains constitutively or after insecticide exposure. Insect Mol Biol 14:509–521

    Article  PubMed  CAS  Google Scholar 

  • Wallis GP, Aitken THG, Beaty BJ, Lorenz L, Amato GD, Tabachnick WJ (1985) Selection for susceptibility and refractoriness of Aedes aegypti to oral infection with yellow fever virus. Am J Trop Med Hyg 34:1225–1231

    PubMed  CAS  Google Scholar 

  • WHO (2001) Yellow Fever. Fact Sheet No. 100. World Health Organization, Geneva

    Google Scholar 

  • WHO (2002) Dengue and Dengue Haemorrhagic Fever. Fact Sheet No. 117. World Health Organization, Geneva

    Google Scholar 

  • Wondji CS, Hunt RH, Pignatelli P, Steen K, Coetzee M, Besansky N, Lobo N, Collins FH, Hemingway, Ranson H (2005) An integrated genetic and physical map for the malaria vector Anopheles funestus. Genetics 171:1779–1787

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Xu S (2003) A SAS/IML program for mapping QTL in line crosses. Paper 235:1–6, SUGI 28 Proceedings, Seattle

    Google Scholar 

  • Xu S, Yonash N, Vallejo RL, Cheng HH (1998) Mapping quantitative trait loci for binary traits using a heterogeneous residual variance model: an application to Marek’s disease susceptibility in chickens. Genetica 104:171–178

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Dong Y, Abraham EG, Kocan A, Srinivasan P, Ghosh AK, Sinden RE, Ribeiro JMC, Jacobs-Lorena M, Kafatos FC, Dimopoulos G (2005) Transcriptome analysis of Anopheles stephensi–Plasmodium berghei interactions. Mol Biochem Parasitol 142:76–87

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Saunders RDC, Fortini D, della Torre A, Coluzzi M, Glover DM, Kafatos FC (1991) Low-resolution genome map of the malaria mosquito Anopheles gambiae. Proc Natl Acad Sci U S A 88:11187–11191

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Cornel AJ, Wang R, Erfle H, Voss H, Ansorge W, Kafatos FC, Collins FH (1993) A detailed genetic map for the X chromosome of the malaria vector, Anopheles gambiae. Science 261:605–608

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Benedict MQ, Cornel AJ, Collins FH, Kafatos FC (1996) An integrated genetic map of the African human malaria vector mosquito, Anopheles gambiae. Genetics 143:941–952

    PubMed  CAS  Google Scholar 

  • Zheng L, Cornel AJ, Wang R, Erfle H, Voss H, Ansorge W, Kafatos FC, Collins FH (1997) Quantitative trait loci for refractoriness of Anopheles gambiae to Plasmodium cynomolgi B. Science 278:425–428

    Article  Google Scholar 

  • Zheng L, Wang S, Romans P, Zhao H, Luna C, Benedict MQ (2003) Quantitative trait loci in Anopheles gambiae controlling the encapsulation response against Plasmodium cynomolgi Ceylon. BMC Genet 4:16

    Article  PubMed  Google Scholar 

  • Zhong D, Menge DM, Temu EA, Chen H, Yan G (2006) Amplified fragment length polymorphism mapping of quantitative trait loci for malaria parasite susceptibility in the yellow fever mosquito Aedes aegypti. Genetics 173:1337–1345

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Severson, D. (2008). Mosquito. In: Genome Mapping and Genomics in Arthropods. Genome Mapping Genomics Animals, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73833-6_6

Download citation

Publish with us

Policies and ethics