Skip to main content

Part of the book series: Genome Mapping Genomics Animals ((MAPPANIMAL,volume 1))

Abstract

Aphids are a group of approximately 4,400 species of phloem-feeding insects with mainly temperate distributions. Although best known as agricultural pests, they are also a valuable system for the study of their complex life cycles, host plant specializations, bacterial symbioses, and environmentally induced morphologies (polyphenisms). The pea aphid, Acyrthosiphon pisum, has recently emerged as the aphid of choice for the development of genomic resources. Here we introduce the pea aphid and discuss a number of biological questions for which the species is well suited for study. We then review previous mapping and quantitative trait loci studies, concluding with a discussion of the genomic tools that are currently available including the genome-sequencing project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baumann L, Baumann P, Thao ML (1999) Detection of the messenger RNA transcribed from genes encoding enzymes of amino acid biosynthesis in Buchnera aphidicola (endosymbiont of aphids). Curr Microbiol 38:135–136

    Article  PubMed  CAS  Google Scholar 

  • Birkle LM, Douglas AE (1999) Low genetic diversity among pea aphid (Acyrthosiphon pisum) biotypes of different plant affiliation. Heredity 82:605–612

    Article  PubMed  Google Scholar 

  • Blackman RL (1987) Reproduction, cytogenetics and development. In: Minks AK, Harrewijn P (eds) Aphids: Their biology, Natural Enemies and Control. Elsevier, Amsterdam, pp 163–195

    Google Scholar 

  • Blackman RL, Eastop VF (1994) Aphids on the World’s Trees: An Identification and Information Guide. CAB International, Wallingford, UK

    Google Scholar 

  • Blackman RL, Eastop VF (2000) Aphids on the World’s Crops: An Identification and Information Guide. Wiley, Chichester, UK

    Google Scholar 

  • Braendle C, Miura T, Bickel R, Shingleton AW, Kambhampati S, Stern DL (2003) Developmental origin and evolution of bacteriocytes in the aphid–Buchnera symbiosis. PLoS Biol 1:70–76

    Article  CAS  Google Scholar 

  • Braendle C, Caillaud MC, Stern DL (2005a) Genetic mapping of aphicarus: a sex-linked locus controlling a wing polymorphism in the pea aphid (Acyrthosiphon pisum). Heredity 94:435–442

    Article  PubMed  CAS  Google Scholar 

  • Braendle C, Friebe I, Caillaud MC, Stern DL (2005b) Genetic variation for an aphid wing polyphenism is genetically linked to naturally occurring wing polymorphism. Proc R Soc Lond B 272:657–665

    Article  Google Scholar 

  • Brisson JA, Davis GK, Stern DL (2007) Common genome-wide patterns of transcript accumulation underlying the wing polyphenism and polymorphism in the pea aphid (Acyrthosiphon pisum). Evol Dev 9:338–346

    Article  PubMed  CAS  Google Scholar 

  • Buchner P (1965) Endosymbiosis of Animals with Plant Microorganisms. Interscience Publ, New York

    Google Scholar 

  • Caillaud MC, Via S (2000) Specialized feeding behavior influences both ecological specialization and assortative mating in sympatric host races of pea aphids. Am Nat 156:606–621

    Article  Google Scholar 

  • Caillaud MC, Boutin M, Braendle C, Simon J-C (2002) A sex-linked locus controls wing polymorphism in males of the pea aphid, Acyrthosiphon pisum (Harris). Heredity 89:346–352

    Article  PubMed  CAS  Google Scholar 

  • Caillaud MC, Mondor-Genson G, Levine-Wilkinson S, Mieuzet L, Frantz A, Simon JC, D’Acier AC (2004) Microsatellite DNA markers for the pea aphid Acyrthosiphon pisum. Mol Ecol Notes 4:446–448

    Article  CAS  Google Scholar 

  • Chen DQ, Campbell BC, Purcell AH (1996) A new Rickettsia from a herbivorous insect, the pea aphid Acyrthosiphon pisum (Harris). Curr Microbiol 33:123–128

    Article  PubMed  CAS  Google Scholar 

  • Dixon AFG (1998) Aphid Ecology. Chapman & Hall, London

    Google Scholar 

  • Dixon AFG, Agarwala BK (1999) Ladybird-induced life-history changes in aphids. Proc R Soc Lond B 266:1549–1553

    Article  Google Scholar 

  • Field LM, Foster SP (2002) Amplified esterase genes and their relationship with other insecticide resistance mechanisms in English field populations of the aphids, Myzus persicae (Sulzer). Pest Manag Sci 58:889–894

    Article  PubMed  CAS  Google Scholar 

  • Field LM, Devonshire AL, Forde BG (1988) Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene. Biochem J 251:309–312

    PubMed  CAS  Google Scholar 

  • Frantz A, Plantegenest M, Mieuzet L, Simon JC (2006) Ecological specialization correlates with genotypic differentiation in sympatric host-populations of the pea aphid. J Evol Biol 19:392–401

    Article  PubMed  CAS  Google Scholar 

  • Fukatsu T, Tsuchida T, Nikoh N, Koga R (2001) Spiroplasma symbiont of the pea aphid, Acyrthosiphon pisum (Insecta: Homoptera). Appl Environ Microbiol 67:1284–1291

    Article  PubMed  CAS  Google Scholar 

  • Gil R, Sabater-Munoz B, Latorre A, Silva FJ, Moya A (2002) Extreme genome reduction in Buchnera spp.: toward the minimal genome needed for symbiotic life. Proc Natl Acad Sci U S A 99:4454–4458

    Article  PubMed  CAS  Google Scholar 

  • Hales DF, Wilson ACC, Sloane MA, Simon J-C, Legallic J-F, Sunnucks P (2002) Lack of detectable genetic recombination on the X chromosome during the parthenogenetic production of female and male aphids. Genet Res Camb 79:203–209

    Google Scholar 

  • Hawthorne DJ, Via S (2001) Genetic linkage of ecological specialization and reproductive isolation in pea aphids. Nature 412:904–907

    Article  PubMed  CAS  Google Scholar 

  • Heie OE (1980) The Aphidoidea (Hemiptera) of Fennoscandia and Denmark. 1. General Part. The families Mindaridae, Hormaphididae, Thelaxidae, Anoeciidae, and Pemphigidae. Fauna Entomol Scandinavica 9

    Google Scholar 

  • Ishaaya I (2001) Biochemical Sites of Insecticide Action and Resistance. Springer, New York

    Google Scholar 

  • Kring JB (1977) Structure of the eyes of the pea aphid, Acyrthosiphon pisum. Ann Entomol Soc Am 70:855–860

    Google Scholar 

  • Kurokawa T, Yao I, Akimoto S, Hasegawa E (2004) Isolation of six microsatellite markers from the pea aphid, Acyrthosiphon pisum (Homoptera, Aphididae). Mol Ecol Notes 4:523–524

    Article  CAS  Google Scholar 

  • Lees AD (1990) Dual photoperiodic timers controlling sex and female morph determination in Acyrthosiphon pisum. J Insect Physiol 36:585–591

    Article  Google Scholar 

  • Leonardo TE, Mondor EB (2006) Symbiont modifies host life-history traits that affect gene flow. Proc R Soc Lond B 273:1079–1084

    Article  CAS  Google Scholar 

  • MacKay PA, Wellington WG (1975) A comparison of the reproductive patterns of apterous and alate virginparous Acyrthosiphon pisum (Homoptera: Aphididae). Can Entomol 107:1161–1166

    Google Scholar 

  • MacKay PA, Reeleder DJ, Lamp RJ (1983) Sexual morph production by apterous and alate viviparous Acyrthosiphon pisum (Harris) (Homoptera: Aphididae). Can J Zool 61:952–957

    Article  Google Scholar 

  • Minks AK, Harrewijn P (1980) Aphids, their Biology, Natural Enemies, and Control. Elsevier, Amsterdam

    Google Scholar 

  • Montllor CB, Maxmen A, Purcell AH (2002) Facultative bacterial endosymbionts benefit pea aphids, Acyrthosiphon pisum, under heat stress. Ecol Entomol 27:189–195

    Article  Google Scholar 

  • Moran NA (1992) The evolution of aphid life cycles. Annu Rev Entomol 37:321–348

    Article  Google Scholar 

  • Moran NA, Kaplan ME, Gelsey MJ, Murphy TG, Scholes EA (1999) Phylogenetics and evolution of the aphid genus Uroleucon based on mitochondrial and nuclear DNA sequences. Syst Entomol 24:85–93

    Article  Google Scholar 

  • Moran NA, Russell JA, Koga R, Fukatsu T (2005) Evolutionary relationships of three new species of Enterobacteriaceae living as symbionts of aphids and other insects. Appl Environ Microbiol 71:3302–3310

    Article  PubMed  CAS  Google Scholar 

  • Morrison WP, Peairs FB (1998) Response model concept and economic impact. In: Quisenberry SS, Peairs FB (eds) Response Model for an Introduced Pest: The Russian Wheat Aphid. Thomas Say Publ in Entomol, Entomol Soc Am, Lanham, MD, USA, pp 1–11

    Google Scholar 

  • Munson MA, Baumann P, Clark MA, Baumann L, Moran NA, et al (1991) Evidence for the establishment of aphid–eubacterium endosymbiosis in an ancestor of four aphid families. J Bacteriol 173:6321–6324

    PubMed  CAS  Google Scholar 

  • Mutti NS, Park Y, Reese JC, Reeck GR (2006) RNAi knockdown of a salivary transcript leading to lethality in the pea aphid (Acyrthosiphon pisum). J Insect Sci 6:34

    Google Scholar 

  • Nault LR (1997) Arthropod transmission of plant viruses: a new synthesis. Ann Entomol Soc Am 90:521–541

    Google Scholar 

  • Nault BA, Shah DA, Dillard HR, McFaul AC (2004) Seasonal and spatial dynamics of alate aphid dispersal in snap bean fields in proximity to alfalfa and implications for virus management. Environ Entomol 33:1593–1601

    Article  Google Scholar 

  • Oerke EC (1994) Estimated losses in major food and cash crops. In: Oerke EC, Dehne HW, Schonbeck F, Weber A (eds) Crop Production and Crop Protection. Elsevier, Amsterdam, pp 179–296

    Google Scholar 

  • Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci U S A 100:1803–1807

    Article  PubMed  CAS  Google Scholar 

  • Oliver KM, Moran NA, Hunter MS (2005) Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Natl Acad Sci U S A 102:12795–12800

    Article  PubMed  CAS  Google Scholar 

  • Orlando E (1974) Sex determination in Megoura viciae Buckton (Homoptera, Aphididae). Monit Zool Ital (NS) 8:61–70

    Google Scholar 

  • Pavlopoulos A, Berghammer AJ, Averof M, Klingler M (2004) Efficient transformation of the beetle Tribolium castaneum using the Minos transposable element: quantitative and qualitative analysis of genomic integration events. Genetics 167:737–746

    Article  PubMed  CAS  Google Scholar 

  • Podjasek JO, Bosnjak LM, Booker DJ, Mondor EB (2005) Alarm pheromone induces a transgenerational wing polyphenism in the pea aphid, Acyrthosiphon pisum. Can J Zool 83:1138–1141

    Google Scholar 

  • Robert Y (1987) Dispersion and migration. In: Minks AK, Harrewijn P (eds) Aphids, Their Biology, Natural Enemies, and Control. Elsevier, Amsterdam, pp 299–313

    Google Scholar 

  • Sabater-Munoz B, Legeai F, Rispe C, Bonhomme J, Dearden P, Dossat C, Duclert A, Gauthier JP, Ducray DG, Hunter WB, Dang P, Kambhampati S, Martinez-Torres D, Cortes T, Moya A, Nakabachi A, Philippe C, Prunier-Leterme N, Rahbe Y, Simon JC, Stern DL, Wincker P, Tagu D (2006) Large-scale gene discovery in the pea aphid Acyrthosiphon pisum (Hemiptera). Genom Biol 7:R21.1–R21.11

    Google Scholar 

  • Sandstrom J (1994) High variation in host adaptation among clones of pea aphid, Acyrthosiphon pisum on Pisum sativum. Entomol Exp Appl 71:245–256

    Article  Google Scholar 

  • Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407:81–86

    Article  PubMed  CAS  Google Scholar 

  • Shingleton AW, Sisk GC, Stern DL (2003) Diapause in the pea aphid (Acyrthosiphon pisum) is a slowing but not a cessation of development. BMC Dev Biol 3:7

    Article  PubMed  Google Scholar 

  • Simon JC, Carre S, Boutin M, Prunier-Leterme N, Sabater-Munoz B, Latorre A, Bournoville R (2003) Host-based divergence in populations of the pea aphid: insights from nuclear markers and the prevalence of facultative symbionts. Proc R Soc Lond B 270:1703–1712

    Article  Google Scholar 

  • Sloggett JJ, Weisser WW (2002) Parasitoids induce production of the dispersal morphs of the pea aphid, Acyrthosiphon pisum. Oikos 98:323–333

    Article  Google Scholar 

  • Smith MAH, MacKay PA (1989) Genetic variation in male alary dimorphism in populations of the pea aphid, Acyrthosiphon pisum. Entomol Exp Appl 51:125–132

    Article  Google Scholar 

  • Sun RY, Robinson AG (1966) Chromosome studies of 50 species of aphids. Can J Zool 44:649–653

    Article  PubMed  CAS  Google Scholar 

  • Sutherland ORW (1969) The role of crowding in the production of winged forms by two strains of the pea aphid, Acyrthosiphon pisum. J Insect Physiol 15:1385–1410

    Article  Google Scholar 

  • Tsuchida T, Koga R, Fukatsu T (2004) Host plant specialization governed by facultative symbiont. Science 303:1989

    Article  PubMed  CAS  Google Scholar 

  • Via S (1991) The genetic structure of host plant adaptation in a spatial patchwork: demographic variability among reciprocally transplanted pea aphid clones. Evolution 45:827–852

    Article  Google Scholar 

  • Via S (1992) Inducing the sexual forms and hatching the eggs of pea aphids. Entomol Exp Appl 65:119–127

    Article  Google Scholar 

  • Via S (1994) Population structure and local adaptation in a clonal herbivore. In: Real LA (ed) Ecological Genetics. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Via S (1999) Reproductive isolation between sympatric races of pea aphids. I. Gene flow restriction and habitat choice. Evolution 53:1446–1457

    Article  Google Scholar 

  • Von Dohlen CD, Teulon DAJ (2003) Phylogeny and historical biogeography of New Zealand indigenous Aphidini aphids (Hemiptera, Aphididae): an hypothesis. Ann Entomol Soc Am 96:107–116

    Article  CAS  Google Scholar 

  • Wilson ACC, Sunnucks P, Hales DF (1997) Random loss of X chromosome at male determination in an aphid, Sitobion near fragariae, detected using an X-linked polymorphic microsatellite marker. Genet Res 69:233–236

    Article  Google Scholar 

  • Wilson ACC, Dunbar HE, Davis GK, Hunter WB, Stern DL, Moran NA (2006) A dual-genome microarray for the pea aphid, Acyrthosiphon pisum, and its obligate bacterial symbiont, Buchnera aphidicola. BMC Genomics 7:50

    Article  PubMed  CAS  Google Scholar 

  • Wimmer EA (2003) Applications of insect transgenesis. Nat Rev Genet 4:225–232

    Article  PubMed  CAS  Google Scholar 

  • Zera AJ, Denno RF (1997) Physiology and ecology of dispersal polymorphism in insects. Annu Rev Entomol 42:207–230

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brisson, J., Davis, G. (2008). Pea Aphid. In: Genome Mapping and Genomics in Arthropods. Genome Mapping Genomics Animals, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73833-6_5

Download citation

Publish with us

Policies and ethics