Skip to main content

Part of the book series: Genome Mapping Genomics Animals ((MAPPANIMAL,volume 1))

Abstract

Bumblebees are important pollinators in both natural and agricultural settings. Bombus terrestris, the European buff-tailed bumblebee, is of particular economic importance in the pollination of many greenhouse crops. It is also a model organism in basic research in fields such as ecology, evolutionary biology, and physiology. Particularly, it is an emerging model species for quantitative and population genetics. Several genetic linkage maps have been produced for this species. Map construction is facilitated by the large numbers of haploid sons which may be produced by an individual queen of this primitively eusocial hymenopteran. These haploid males are genetically equivalent to gametes, and allow the direct estimation of the recombination frequency in the mother. A core linkage map of 14 homologous linkage groups has been determined. This species’ total recombination genome length has been consistently estimated at around 2,700–2,800 cM using a methods-of-moments approach. The genomic recombination rate is thus estimated to be 226 kb/cM. Other genomic tools developed for B. terrestris include a bacterial artificial chromosome (BAC) library as well as several cDNA libraries enriched with genes relevant for caste determination. Research in bumblebee genomics also profits greatly from developments in the honeybee Apis mellifera. For example, sequence homology between these hymenoptera is great enough to allow the isolation of honeybee candidate genes in the bumblebee. Genetic linkage maps have so far been used for mapping quantitative trait loci (QTL) for host-parasite susceptibility, immune defense, and male sexual investment. Additionally, the sex determination locus has been mapped. QTL mapping not only allows insights into the genetic architecture of fitness-relevant traits, but also may enable molecular assisted breeding for pathogen resistance or improved agricultural traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alaux C, Jaisson P, Hefetz A (2005) Reproductive decision-making in semelparous colonies of the bumblebee Bombus terrestris. Behav Ecol Sociobiol 59:270–277

    Article  Google Scholar 

  • Andersson L (2001) Genetic dissection of phenotypic diversity in farm animals. Nat Rev Genet 2:130–138

    Article  PubMed  CAS  Google Scholar 

  • Baer B, Schmid-Hempel P (1999) Experimental variation in polyandry affects parasite loads and fitness in a bumble-bee. Nature 397:151–154

    Article  CAS  Google Scholar 

  • Beye M, Hasselmann M, Fondrk MK, Page RE, Omholt SW (2003) The gene csd is the primary signal for sexual development in the honeybee and encodes an sr-type protein. Cell 114:419–429

    Article  PubMed  CAS  Google Scholar 

  • Cameron SA, Williams PH (2003) Phylogeny of bumble bees in the new world subgenus Fervidobombus (Hymenoptera: Apidae): congruence of molecular and morphological data. Mol Phylogenet Evol 28:552–563

    Article  PubMed  CAS  Google Scholar 

  • Chakravarti A, Lasher LK, Reefer JE (1991) A maximum-likelihood method for estimating genome length using genetic-linkage data. Genetics 128:175–182

    PubMed  CAS  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Cook JM (1993) Sex determination in the hymenoptera: a review of models and evidence. Heredity 71:421–435

    Google Scholar 

  • Dag A, Kammer Y (2001) Comparison between the effectiveness of honey bee (Apis mellifera) and bumble bee (Bombus terrestris) as pollinators of greenhouse sweet pepper (Capsicum annuum). Am Bee J 141:447–448

    Google Scholar 

  • Duchateau MJ, Hoshiba H, Velthuis HHW (1994) Diploid males in the bumble-bee Bombus terrestris sex determination, sex alleles and viability. Entomol Exp Appl 71:263–269

    Article  Google Scholar 

  • Estoup A, Scholl A, Pouvreau A, Solignac M (1995) Monoandry and polyandry in bumble bees (Hymenoptera: Bombinae) as evidenced by highly variable microsatellites. Mol Ecol 4:89–93

    PubMed  CAS  Google Scholar 

  • Gadau J, Gerloff CU, Kruger N, Chan H, Schmid-Hempel P, Wille A, Page RE (2001) A linkage analysis of sex determination in Bombus terrestris (L.) (Hymenoptera: Apidae). Heredity 87:234–242

    Article  PubMed  CAS  Google Scholar 

  • Gerloff CU, Ottmer BK, Schmid-Hempel P (2003) Effects of inbreeding on immune response and body size in a social insect, Bombus terrestris. Funct Ecol 17:582–589

    Article  Google Scholar 

  • Ghazoul J (2005) Buzziness as usual? Questioning the global pollination crisis. Trends Ecol Evol 20:367–373

    Article  PubMed  Google Scholar 

  • Gorman MJ, Severson DW, Cornel AJ, Collins FH, Paskewitz SM (1997) Mapping a quantitative trait locus involved in melanotic encapsulation of foreign bodies in the malaria vector, Anopheles gambiae. Genetics 146:965–971

    PubMed  CAS  Google Scholar 

  • Goulson D (2003) Bumblebees – Their Behaviour and Ecology. Oxford University Press, New York

    Google Scholar 

  • Hamilton WD, Axelrod R, Tanese R (1990) Sexual reproduction as an adaptation to resist parasites (a review). Proc Natl Acad Sci U S A 87:3566–3573

    Article  PubMed  CAS  Google Scholar 

  • Hasselmann M, Fondrk MK, Page RE, Beye M (2001) Fine scale mapping in the sex locus region of the honey bee (Apis mellifera). Insect Mol Biol 10:605–608

    Article  PubMed  CAS  Google Scholar 

  • Hulbert SH, Ilott TW, Legg EJ, Lincoln SE, Lander ES, Michelmore RW (1988) Genetic analysis of the fungus, Bremia lactucae, using restriction fragment length polymorphisms. Genetics 120:947–958

    PubMed  CAS  Google Scholar 

  • Hunt GJ, Page RE (1995) Linkage map of the honey-bee, Apis mellifera, based on RAPD markers. Genetics 139:1371–1382

    PubMed  CAS  Google Scholar 

  • Ings TC, Schikora J, Chittka L (2005) Bumblebees, humble pollinators or assiduous invaders? A population comparison of foraging performance in Bombus terrestris. Oecologia 144:508–516

    Article  PubMed  Google Scholar 

  • Kaslow DC, Welburn SC (1996) Insect-transmitted pathogens in the insect midgut. In: Lehane MJ, Billingsley PF (eds) Biology of the Insect Midgut. Chapman and Hall, London, pp 432–462

    Google Scholar 

  • Kawakita A, Sota T, Ito M, Ascher JS, Tanaka H, Kato M, Roubik DW (2004) Phylogeny, historical biogeography, and character evolution in bumble bees (Bombus: Apidae) based on simultaneous analysis of three nuclear gene sequences. Mol Phylogenet Evol 31:799–804

    Article  PubMed  CAS  Google Scholar 

  • Little TJ (2002) The evolutionary significance of parasitism: do parasite-driven genetic dynamics occur ex silico? J Evol Biol 15:1–9

    Article  Google Scholar 

  • Lopez-Vaamonde C, Koning JW, Brown RM, Jordan WC, Bourke AFG (2004) Social parasitism by male-producing reproductive workers in a eusocial insect. Nature 430:557–560

    Article  PubMed  CAS  Google Scholar 

  • Michener CD (2000) The Bees of the World. John Hopkins University Press, Baltimore

    Google Scholar 

  • Morandin LA, Laverty TM, Kevan PG (2001) Bumble bee (Hymenoptera: Apidae) activity and pollination levels in commercial tomato greenhouses. J Econ Entomol 94:462–467

    Article  PubMed  CAS  Google Scholar 

  • Moret Y, Schmid-Hempel P (2000) Survival for immunity: the price of immune system activation for bumblebee workers. Science 290:1166–1168

    Article  PubMed  CAS  Google Scholar 

  • Pereboom JJM, Jordan WC, Sumner S, Hammond RL, Bourke AFG (2005) Differential gene expression in queen-worker caste determination in bumble-bees. Proc R Soc Lond B 272:1145–1152

    Article  CAS  Google Scholar 

  • Schmid-Hempel R, Schmid-Hempel P (2000) Female mating frequencies in Bombus spp. from central Europe. Insect Soc 47:36–41

    Article  Google Scholar 

  • Schmid-Hempel P, Puhr K, Kruger N, Reber C, Schmid-Hempel R (1999) Dynamic and genetic consequences of variation in horizontal transmission for a microparasitic infection. Evolution 53:426–434

    Article  Google Scholar 

  • Sirviö A, Gadau J, Rueppell O, Lamatsch D, Boomsma JJ, Pamilo P, Page RE (2006) High recombination frequency creates genotypic diversity in colonies of the leaf-cutting ant Acromyrmex echinatior. J Evol Biol 19:1475–1485

    Article  PubMed  Google Scholar 

  • Siva-Jothy MT, Moret Y, Rolff J (2005) Insect immunity: an evolutionary ecology perspective. Adv Insect Physiol 32:1–48

    Article  CAS  Google Scholar 

  • Slate J (2005) Quantitative trait locus mapping in natural populations: progress, caveats and future directions. Mol Ecol 14:363–379

    Article  PubMed  CAS  Google Scholar 

  • The Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–946

    Article  CAS  Google Scholar 

  • Velthuis HHW, van Doorn A (2006) A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37:421–451

    Article  Google Scholar 

  • Whiting PW (1943) Multiple alleles complementary sex determination of Habrobracon. Genetics 28:365–382

    PubMed  CAS  Google Scholar 

  • Wilfert L, Gadau J, Schmid-Hempel P (2006) A core linkage map of the bumblebee Bombus terrestris. Genome 49:1215–1226

    Article  PubMed  CAS  Google Scholar 

  • Wilfert L, Gadau J, Baer B, Schmid-Hempel P (2007a) Natural variation in the genetic architecture of a host-parasite interaction in the bumblebee Bombus terrestris. Mol Ecol 16:1327–1339

    Article  PubMed  CAS  Google Scholar 

  • Wilfert L, Gadau J, Schmid-Hempel P (2007b) The genetic architecture of immune defense and reproduction in male Bombus terestris bumblebees. Evolution 61:804–815

    Article  PubMed  Google Scholar 

  • Zayed A (2004) Effective population size in hymenoptera with complementary sex determination. Heredity 93:627–630

    Article  PubMed  CAS  Google Scholar 

  • Zheng LB, Cornel AJ, Wang R, Erfle H, Voss H, Ansorge W, Kafatos FC, Collins FH (1997) Quantitative trait loci for refractoriness of Anopheles gambiae to Plasmodium cynomolgi b. Science 276:425–428

    Article  PubMed  CAS  Google Scholar 

  • Zheng LB, Wang S, Romans P, Zhao HY, Luna C, Benedict MQ (2003) Quantitative trait loci in Anopheles gambiae controlling the encapsulation response against Plasmodium cynomolgi ceylon. BMC Genetics 4:16

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wilfert, L., Schmid-Hempel, P., Gadau, J. (2008). Bumblebee. In: Genome Mapping and Genomics in Arthropods. Genome Mapping Genomics Animals, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73833-6_2

Download citation

Publish with us

Policies and ethics