Skip to main content

Stanley: The Robot That Won the DARPA Grand Challenge

  • Chapter
The 2005 DARPA Grand Challenge

Abstract

This article describes the robot Stanley, which won the 2005 DARPA Grand Challenge. Stanley was developed for high-speed desert driving without human intervention. The robot’s software system relied predominately on state-of-the-art AI technologies, such as machine learning and probabilistic reasoning. This article describes the major components of this architecture, and discusses the results of the Grand Challenge race.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brooks, C. and Iagnemma, K. (2005). Vibration-based terrain classification for planetary exploration rovers. IEEE Transactions on Robotics, 21(6):1185–1191.

    Article  Google Scholar 

  2. Crisman, J. and Thorpe, C. (1993). SCARF: a color vision system that tracks roads and intersections. IEEE Transactions on Robotics and Automation, 9(1):49–58.

    Article  Google Scholar 

  3. DARPA (2004). Darpa grand challenge rulebook. On the Web at http://www.darpa.mil/grandchallenge05/Rules_8oct04.pdf.

  4. Davies, B. and Lienhart, R. (2006). Using CART to segment road images. In Proceedings SPIE Multimedia Content Analysis, Management, and Retrieval, San Jose, CA.

    Google Scholar 

  5. Dickmanns, E. (2002). Vision for ground vehicles: history and prospects. International Journal of Vehicle Autonomous Systems, 1(1):1–44.

    Article  Google Scholar 

  6. Dickmanns, E., Behringer, R., Dickmanns, D., Hildebrandt, T., Maurer, M., Schiehlen, J., and Thomanek, F. (1994). The seeing passenger car VaMoRs-P. In Proceedings of the International Symposium on Intelligent Vehicles, Paris, France.

    Google Scholar 

  7. Dima, C. and Hebert, M. (2005). Active learning for outdoor obstacle detection. In Thrun, S., Sukhatme, G., Schaal, S., and Brock, O., editors, Proceedings of the Robotics Science and Systems Conference, Cambridge, MA.

    Google Scholar 

  8. Duda, R. and Hart, P. (1973). Pattern classification and scene analysis. Wiley, New York.

    MATH  Google Scholar 

  9. Ettinger, S., Nechyba, M., Ifju, P., and Waszak, M. (2003). Vision-guided flight stability and control for micro air vehicles. Advanced Robotics, 17:617–640.

    Article  Google Scholar 

  10. Farrell, J. and Barth, M. (1999). The Global Positioning System. McGraw-Hill.

    Google Scholar 

  11. Gat, E. (1998). Three-layered architectures. In Kortenkamp, D., Bonasso, R., and Murphy, R., editors, AI-based Mobile Robots: Case Studies of Successful Robot Systems, pages 195–210. MIT Press, Cambridge, MA.

    Google Scholar 

  12. Gillespie, T. (1992). Fundamentals of Vehicle Dynamics. SAE Publications, Warrendale, PA.

    Google Scholar 

  13. Happold, M., Ollis, M., and Johnson, N. (2006). Enhancing supervised terrain classification with predictive unsupervised learning. In Sukhatme, G., Schaal, S., Burgard, W., and Fox, D., editors, Proceedings of the Robotics Science and Systems Conference, Philadelphia, PA.

    Google Scholar 

  14. Hebert, M., Thorpe, C., and Stentz, A. (1997). Intelligent Unmanned Ground Vehicles: Autonomous Navigation Research at Carnegie Mellon University. Kluwer Academic Publishers.

    Google Scholar 

  15. Iagnemma, K. and Dubowsky, S. (2004). Mobile Robots in Rough Terrain: Estimation, Motion Planning, and Control with application to Planetary Rovers. Springer Tracts in Advanced Robotics (STAR) Series, Berlin, Germany.

    Google Scholar 

  16. Julier, S. and Uhlmann, J. (1997). A new extension of the Kalman filter to nonlinear systems. In International Symposium on Aerospace/Defense Sensing, Simulate and Controls, Orlando, FL.

    Google Scholar 

  17. Kelly, A. and Stentz, A. (1998). Rough terrain autonomous mobility, part 1: A theoretical analysis of requirements. Autonomous Robots, 5:129–161.

    Article  Google Scholar 

  18. Ko, N. and Simmons, R. (1998). The lane-curvature method for local obstacle avoidance. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Victoria, Canada.

    Google Scholar 

  19. Pomerleau, D. and Jochem, T. (1996). Rapidly adapting machine vision for automated vehicle steering. IEEE Expert, 11(2):19–27.

    Article  Google Scholar 

  20. Pomerleau, D. A. (1991). Rapidly adapting neural networks for autonomous navigation. In Lippmann, R. P., Moody, J. E., and Touretzky, D. S., editors, Advances in Neural Information Processing Systems 3, pages 429–435, San Mateo. Morgan Kaufmann.

    Google Scholar 

  21. Pomerleau, D. A. (1993). Knowledge-based training of artificial neural networks for autonomous robot driving. In Connell, J. H. and Mahadevan, S., editors, Robot Learning, pages 19–43. Kluwer Academic Publishers.

    Google Scholar 

  22. Simmons, R. and Apfelbaum, D. (1998). A task description language for robot control. In Proceedings of the Conference on Intelligent Robots and Systems (IROS), Victoria, CA.

    Google Scholar 

  23. van der Merwe, R. (2004). Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models. PhD thesis, OGI School of Science & Engineering.

    Google Scholar 

  24. van der Merwe, R. and Wan, E. (2004). Sigma-point kalman filters for integrated navigation. In Proceedings of the 60th Annual Meeting of The Institute of Navigation (ION), Dayton, OH.

    Google Scholar 

  25. Wellington, C., Courville, A., and Stentz, A. (2005). Interacting markov random fields for simultaneous terrain modeling and obstacle detection. In Thrun, S., Sukhatme, G., Schaal, S., and Brock, O., editors, Proceedings of the Robotics Science and Systems Conference, Cambridge, MA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thrun, S. et al. (2007). Stanley: The Robot That Won the DARPA Grand Challenge. In: Buehler, M., Iagnemma, K., Singh, S. (eds) The 2005 DARPA Grand Challenge. Springer Tracts in Advanced Robotics, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73429-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73429-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73428-4

  • Online ISBN: 978-3-540-73429-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics