Skip to main content

Consistent Handling of Linear Features in Polyline Simplification

  • Chapter
Advances in Geoinformatics

Abstract

Polyline simplification is one of most thoroughly studied subjects in map generalization. It consists in reducing the number of vertices of a polygonal chain in order to represent them at a smaller scale without unnecessary details. Besides its main application in generalization, it is also considerably employed in Geographic Information Systems (GIS) to reduce digital map data for speeding up processing and visualization and to homogenize different data sets in the process of data integration. A variety of techniques has been presented by researchers in different contexts [14, 7, 12, 16].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ai, T., Guo, R., & Liu, Y. (2000). A Binary Tree Representation of Curve Hierarchical Structure Based on Gestalt Principles. The 9th International Symposium on Spatial Data Handling, 2a, pp. 30–43. Beijing, China.

    Google Scholar 

  2. de Berg, M., van Kreveld, M., & Schirra, S. (1998). Topologically Correct Subdivision Simplification Using the Bandwidth Criterion. Cartography and Geographic Information Systems, 25(4), 243–257.

    Article  Google Scholar 

  3. Douglas, D. H., & Peucker, T. K. (1973). Algorithms for the reduction of the number of points required for represent a digitized line or its caricature. Canadian Cartographer, 10(2), 112–122.

    Google Scholar 

  4. Edwardes, A., Mackaness, W., & Urvin, T. (1998). Self Evaluating Generalization Algorithms to Automatically Derive Multi Scale Boundary Sets. The 8th International Symposium on Spatial Data Handling, (pp. 361–372). Vancouver, Canada.

    Google Scholar 

  5. Jenks, G. F. (1981). Lines, Computers and Human Frailties. Annals of the Association of American Geographers, 71, pp. 1–10.

    Article  Google Scholar 

  6. Jones, C. B., Bundy, G. L., & Ware, J. M. (1995). Map generalization with a triangulated data structure. Cartography and Geographic Information Systems, 22(4), 317–331.

    Google Scholar 

  7. Lang, T. (1969). Rules for the robot draughtsmen. The Geographical Magazine, 42(1), 50–51.

    Google Scholar 

  8. McKeown, D., McMahil, J., & Caldwell, D. (1999). The use of spatial context in linear feature simplification. GeoComputation 99. Mary Washington College, Fredericksburg, Virginia.

    Google Scholar 

  9. Müller, J. C. (1990). The removal of spatial conflicts in line generalisation. Cartography and Geographic Information Systems, 17(2), 141–149.

    Google Scholar 

  10. Penn State University. (1992). Fonte: Digital Chart of the World Server: http://www.maproom.psu.edu/dcw

    Google Scholar 

  11. Ramer, U. (1972). An iterative procedure for the polygonal approximation of plane curves. Computer Graphics and Image Processing, 1, 224–256.

    Google Scholar 

  12. Reumann, K., & Witkam, A. P. (1974). Optimizing curve segmentation in computer graphics. In: A. Gunther, B. Levrat, & H. Lipps (Ed.), Proceedings of the International Computing Symposium (pp. 467–472). American Elsevier.

    Google Scholar 

  13. Saalfeld, A. (1999). Topologically consistent line simplification with the Douglas-Peucker algorithm. Cartography and Geographic Information Science, 26(1), 7–18.

    Article  Google Scholar 

  14. Tobler, W. R. (1964). An experiment in the computer generalization of map. Office of Naval Research, Geography Branch.

    Google Scholar 

  15. van der Poorten, P. M., & Jones, C. B. (2002). Characterisation and generalisation of cartographic lines using Delaunay triangulation. International Journal of Geographical Information Science, 16(8), 773–795.

    Article  Google Scholar 

  16. van der Poorten, P. M., & Jones, C. B. (1999). Customisable line generalisation using Delaunay triangulation. The 19th International Cartographic Association Conference.

    Google Scholar 

  17. Visvalingam, M., & Whyatt, J. D. (1993). Line Generalisation by Repeated Elimination of Points. Cartographic Journal, 30(1), 46–51.

    Google Scholar 

  18. Wang, Z., & Müller, J. C. (1998). Line Generalization Based on Analysis of Shape Characteristics. Cartography and Geographic Information Systems, 22(4), 264–275.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

da Silva, A.C.G., Wu, ST. (2007). Consistent Handling of Linear Features in Polyline Simplification. In: Davis, C.A., Monteiro, A.M.V. (eds) Advances in Geoinformatics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73414-7_1

Download citation

Publish with us

Policies and ethics