Skip to main content

Cytokine, Chemokine, and Co-Stimulatory Fusion Proteins for the Immunotherapy of Solid Tumors

  • Chapter
Therapeutic Antibodies

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 181))

This chapter describes the generation of novel reagents for the treatment of cancer using fusion proteins constructed with natural ligands of the immune system. Immunotherapy is a powerful therapeutic modality that has not been fully harnessed for the treatment of cancer. We and others have hypothesized that if the proper immunoregulatory ligands can be targeted to the tumor, an effective immune response can be mounted to treat both established primary tumors and distant metastatic lesions. Though it is generally believed that immunotherapy has the potential to treat only residual disease, we offer evidence that this approach can, by itself, destroy large tumor masses and produce lasting remissions of experimental solid tumors. From these studies, three major classes of immune activators, namely, cytokines, chemokines, and costimulatory molecules, have been shown to generate antitumor responses in animal models. In addition, the reversal of immune tolerance by the deletion of T regulatory (Treg) cells has been shown to be equally important for effective immunotherapy. In an attempt to identify reagents that can provide an enhanced immune stimulation and treatment of cancer, our laboratory has developed a novel monoclonal antibody targeting approach, designated Tumor Necrosis Therapy (TNT), which utilizes stable intracellular antigens present in all cell types but which are only accessible in dead and/or dying cells. Since tumors contain necrotic and degenerating regions that account for 30–80% of the tumor mass, this targeting approach can be used to deliver therapeutic reagents to the core of tumors, a site abundant in tumor antigens. In our first set of reagents, a panel of cytokine fusion proteins was genetically engineered using monoclonal antibody chimeric TNT-3 (chTNT-3) directed against necrotic regions of tumors (single-stranded DNA) fused with IL-2, or GM-CSF, or TNFαa, or IFNγ. Tested against different solid tumors, these reagentswere found to mount an effective although transient immune response to tumor especially when used in combination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abken H, Hombach A, Heuser C et al. (2002) Tuning tumor-specific T-cell activation: A matter of co-stimulation? Trends Immunol 23:240-245

    Article  PubMed  CAS  Google Scholar 

  • Ajani JA, Rios AA, Ende K et al. (1989) Phase I and II studies of the combination of recombinant human interferon-gamma and 5-fluorouracil in patients with advanced colorectal carcinoma. J Biol Response Modifiers 8: 140-146

    CAS  Google Scholar 

  • Alderson MR, Smith CA, Tough TW et al. (1994) Molecular and biological characterization of human 4-1BB and its ligand. Eur J Immunol 24:2219-2227

    Article  PubMed  CAS  Google Scholar 

  • Aluvaihare VR, Kallikourdis M, Betz AG (2004) Regulatory T-cells mediate maternal tolerance to the fetus. Nature Immunol 5:266-271

    Article  CAS  Google Scholar 

  • Awwad M, North RJ (1990) Radiosensitive barrier to T-cell-mediated adoptive immunotherapy of established tumors. Cancer Res 50:2228-2233

    PubMed  CAS  Google Scholar 

  • Baecher-Allen C, Brown JA, Freeman GJ et al. (2001) CD4+CD25+ regulatory cells in human peripheral blood. J Immunol 167:1245-1253

    Google Scholar 

  • Ben-Efraim S (1999) One hundred years of cancer immunotherapy: A critical appraisal. Tumour Biology 20:1-24

    Article  PubMed  CAS  Google Scholar 

  • Blattman JN, Greenberg PD (2004) Cancer immunotherapy: A treatment for the masses. Science 305:200-205

    Article  PubMed  CAS  Google Scholar 

  • Bubenik J, Otter W, Huland E (2000) Local cytokine therapy of cancer: Interleukin-2, interferon, and related cytokines. Cancer Immunol Immunother 49:116-122

    Article  PubMed  CAS  Google Scholar 

  • Cannons JL, Lau P, Ghumman B et al. (2001) 4-1BB ligand induces cell division, sustains survival, and enhances effector function of CD4+ and CD8+ T cells with similar efficacy. J Immunol 167:1313-1324

    PubMed  CAS  Google Scholar 

  • Chen FM, Hansen EB, Taylor CR et al. (1991) Diffusion and binding of monoclonal antibody TNT-1 in multicellular tumor spheroids. J Natl Cancer Inst 83:200-204

    Article  Google Scholar 

  • Chen L (2004) Co-Inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nature Rev Immunol 4:336-347

    Article  CAS  Google Scholar 

  • Chen S, Yu L, Jiang C et al. (2005) Pivotal study of iodine-131-labeled chimeric tumor necro-sis treatment radioimmunotherapy in patients with advanced lung cancer. J Clin Oncol 23:1538-1547

    Article  PubMed  Google Scholar 

  • Choi BK, Bae JS, Choi EM et al. (2004) 4-1BB-dependent inhibition of immunosuppression by activated CD4+CD25+ T cells. J Leukoc Biol 75:785-791

    Article  PubMed  CAS  Google Scholar 

  • DeBenedette MA, Chu NR, Pollok KE et al. (1995) Role of 4-1BB ligand in costimulation of T lymphocyte growth and its upregulation on M12 B lymphomas by cAMP. J Exp Med 181:985-992

    Article  PubMed  CAS  Google Scholar 

  • Delta-Cruz J, Trinh K, Morriso SL et al. (2000) Recombinant anti-human HER2/neu IgG3-(GM-CSF) fusion protein retains antigen specificity and cytokine fusion and demonstrates antitumor activity. J Immunol 165:5112-5121

    Google Scholar 

  • Di Cailo E, Forni G, Lollini P et al. (2001) The intriguing role of polymorphonuclear neutrophils in anti-tumor reaction. Blood 97:339-345

    Article  Google Scholar 

  • Dieckmann D, Plottner H, Berchtold S, et al. (2001) Ex vivo isolation and characterization of CD4+CD25+T cells with regulatory properties from human blood. J Exp Med 193:1303-1310

    Article  PubMed  CAS  Google Scholar 

  • Dy GK, Adjei AA (2002) Novel targets for lung cancer therapy. J Clin Oncol 20:2881-2894

    Article  PubMed  CAS  Google Scholar 

  • Epstein AL, Chen FM, Taylor CR (1988) A novel method for the detection of necrotic lesions in human cancers. Cancer Res 48:5842-5848

    PubMed  CAS  Google Scholar 

  • Epstein AL, Chen D, Ansari A et al. (1991) Radioimmunodetection of necrotic lesions in human tumors using I-131 labeled TNT-1 F(ab )2 monoclonal antibody. Antibody Immunoconjug Radiopharm 4:151-161

    Google Scholar 

  • Futagawa T, Akiba HK, Jakeda K et al. (2002) Expression and function of 4-1BB and 4-1BB ligand on murine dendritic cells. Int Immunol 14:275-286

    Article  PubMed  CAS  Google Scholar 

  • Gavin MA, Clarke SR, Negrou E et al (2002) Homeostasis and anergy of CD4+CD25+ suppressor T cells in vivo. Nat Immunol 3:33-41

    Article  PubMed  CAS  Google Scholar 

  • Gerard C, Rollins BJ (2001) Chemokines and disease. Nature Immunol 2:108-115

    Article  CAS  Google Scholar 

  • Gillis S, Ferm MM, Ward O (1978) T-cell growth factor: Parameters of production and a quantita-tive microassay for activity. J Immunol 120:2027-2031

    PubMed  CAS  Google Scholar 

  • Giovarelli M, Cappello P, Forni G et al. (2000) Tumor rejection and immune memory elicited by locally released LEC chemokine are associated with and impressive recruitment of APCs, lymphocytes, and granulocytes. J Immunol 164:3200-3206

    PubMed  CAS  Google Scholar 

  • Gramaglia I, Cooper D, Miner K et al. (2000) Co-stimulation of antigen-specific CD4 T cells by 4-1BB ligand. Eur J Immunol 30:392-402

    Article  PubMed  CAS  Google Scholar 

  • Gruss HJ, Duyster J, Herrmann F (1996) Structural and biological features of the TNF receptor and TNF ligand superfamilies: Interactive signals in the pathobiology of Hodgkin’s disease. Ann Oncol 7:19-26

    PubMed  Google Scholar 

  • Hara M, Kingsley C (2001) IL-10 is required for regulatory T cell to mediate tolerance to alloanti-gens in vivo. J Immunol 166:3789-3796

    PubMed  CAS  Google Scholar 

  • Hathcock KS, Laszlo G, Pucillo C et al. (1994) Comparative analysis of B7-1 and B7-2 co-stimulatory ligands: Expression and function. J Exp Med 180:631-640

    Article  PubMed  CAS  Google Scholar 

  • Hill JO, Awwad M, North RJ (1989) Elimination of CD4+ suppressor T cells from susceptible BALB/c mice releases CD8+ T lymphocytes to mediate protective immunity against Leishma-nia. J Exp Med 169:1819-1827

    Article  PubMed  CAS  Google Scholar 

  • Hisayuki N, Hieshima K, Nakayama T et al. (2001) Human CC chemokine liver-expressed chemokine/CCL16 is a functional ligand for CCR1, CCR2, and CCR5, and constitutively expressed by hepatocytes. Int Immunol 13:1021-1029

    Article  Google Scholar 

  • Hodge JW, Abrams S, Schlom J et al. (1994) Induction of anti-tumor immunity by recombinant vaccinia viruses expressing B7-1 or B7-2 costimulatory molecules. Cancer Res 54:5552-5555

    PubMed  CAS  Google Scholar 

  • Hogan MM (1993) Measurement of tumor necrosis factor α and β. In: Colligan JE (ed) Current protocols in immunology. Wiley, New York, pp 6101-6105

    Google Scholar 

  • Hornick JL, Hu P, Khawli LA, et al. (1998) chTNT-3/B, a new chemically modified chimeric monoclonal antibody directed against DNA for the tumor necrosis treatment of solid tumors. Cancer Biother Radiopharm 13:255-268

    Article  PubMed  CAS  Google Scholar 

  • Hornick JL, Khawli LA, Hu P et al. (1999) Pretreatment with a monoclonal antibody/ interleukin 2 fusion protein directed against DNA enhances the delivery of therapeutic molecules to solid tumors. Clin Cancer Res 5:51-60

    PubMed  CAS  Google Scholar 

  • Howard OMZ, Dong HF, Shirakawa A-K et al. (2000) LEC induces chemotaxis and adhension by interacting with CCR1 and CCR8. Blood 96:840-845

    PubMed  CAS  Google Scholar 

  • Ichihara F, Kono K, Takahashi A et al. (2003) H. Increased populations of regulatory T-cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res 9:4404-4408

    PubMed  Google Scholar 

  • Javia LR, Rosenberg SA (2003) CD4+CD25+ Suppressor lymphocytes in the circulation of patients immunized against melanoma antigens. J Immunother 26:85-93

    Article  PubMed  CAS  Google Scholar 

  • Jonuleit H (2001) Identification and functional characterization of human CD4+CD25+ T cells with regulatory properties isolated from peripheral blood. J Exp Med 193:1285-1294

    Article  PubMed  CAS  Google Scholar 

  • Khawli LA, Miller GK, Epstein AL (1994) Effect of seven new vasoactive immunoconjugates on the enhancement of monoclonal antibody uptake in tumors. Cancer 73:824-831

    Article  PubMed  CAS  Google Scholar 

  • Khawli LA, Hornick JL, Sharifi J et al. (1997) Improving the chemotherapeutic index of IUdR using a vasoactive immunoconjugate. Radiochimica Acta 79:83-86

    CAS  Google Scholar 

  • Kim Y-M, Son K (1996) A nitric oxide production bioassay for interferon-γ. J Immunol Methods 198:203-209

    Article  PubMed  CAS  Google Scholar 

  • Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734-1736

    Article  PubMed  CAS  Google Scholar 

  • LeBerthon B, Khawli LA, Miller GK et al. (1991) Enhanced tumor uptake of macromolecules induced by a novel vasoactive interleukin-2 immunoconjugate. Cancer Res 51:2694-2698

    PubMed  CAS  Google Scholar 

  • Lee HW, Park SJ, Choi BK et al. (2002) 4-1BB promotes the survival of CD8+ T lymphocytes by increasing expression of Bcl-xL and Bfl-1. J Immunol 169:4882-4888

    PubMed  Google Scholar 

  • Lee SJ, Myers L, Muralimohan G et al. (2004) 4-1BB and OX40 dual costimulation synergistically stimulate primary specific CD8 T cells for robust effector function. J Immunol 173:3002-3012

    PubMed  CAS  Google Scholar 

  • Levings MK, Sangregorio R, Roncarolo MG (2001) Human CD25+CD4+ T cells suppress naïve and memory T-cell proliferation and can be expanded in vitro without loss of suppressor func-tion. J Exp Med 193:1295-1302

    Article  PubMed  CAS  Google Scholar 

  • Li J, Hu P, Khawli LA et al. (2003a) LEC/chTNT-3 fusion protein for the immunotherapy of experimental solid tumors. J Immunother 26:320-331

    Article  Google Scholar 

  • Li J, Hu P, Khawli LA et al. (2003b) Complete regression of experimental solid tumors by combi-nation LEC/chTNT-3 immunotherapy and CD25+ T-cell depletion. Cancer Res 63:8384-8392

    CAS  Google Scholar 

  • Liu A, Hu P, Khawli LA et al. (2005) B7-Fc fusion protein treatment induces tumor regressions with long-term memory and is enhanced by Treg cell depletion. Clin Cancer Res 11:8492-8502

    Article  PubMed  CAS  Google Scholar 

  • Liu A, Hu P, Khawli LA et al. (2006) B7.1/NHS76: A new co-stimulator fusion protein for the immunotherapy of solid tumors. J Immunother 29:425-435

    Article  PubMed  CAS  Google Scholar 

  • Liyanage UK, Moore TT, Joo HG et al. (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarci-noma. J Immunol 169:2756-2761

    PubMed  CAS  Google Scholar 

  • Mackay CR (2001) Chemokines: Immunology’s high impact factors. Nature Immunol 2:95-101

    Article  CAS  Google Scholar 

  • Maher J, Davies ET (2004) Targeting cytotoxic T lymphocytes for cancer immunotherapy. British J Cancer 91:817-821

    CAS  Google Scholar 

  • Mallett S, Fossum S, Barclay AN (1990) Characterization of the MRC OX40 antigen of activated CD4 positive T lymphocytes - a molecule related to nerve growth factor receptor. Embo J 9:1063-1068

    PubMed  CAS  Google Scholar 

  • Mapara MY, Sykes M (2004) Tolerance and cancer: Mechanisms of tumor evasion and strategies for breaking tolerance. J Clin Oncol 22:1136-1151

    Article  PubMed  CAS  Google Scholar 

  • Marshall NA, Christie LE, Munro LR et al. (2004) Immunosuppressive regulatory T-cells are abun-dant in the reactive lymphocytes of Hodgkin’s lymphoma. Blood 103:1755-1762

    Article  PubMed  CAS  Google Scholar 

  • Maxwell JR, Weinberg A, Prell RA et al. (2000) Danger and OX40 receptor signaling synergize to enhance memory T cell survival by inhibiting peripheral deletion. J Immunol 164:107-112

    PubMed  CAS  Google Scholar 

  • McHugh RS, Nagarajan S, Wang YC et al. (1999) Protein transfer of glycosyl-phosphati-dylinositol-B7-1 into tumor cell membranes: A novel approach to tumor immunotherapy. Cancer Res 59:2433-2437

    PubMed  CAS  Google Scholar 

  • Melero I, Shuford WW, Newby SA et al. (1997) Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med 3:682-685

    Article  PubMed  CAS  Google Scholar 

  • Miller GK, Naeve GS, Gaffar SA et al. (1993) Immunologic and biochemical analysis of TNT-1 and TNT-2 monoclonal antibody binding to histones. Hybridoma 12:689-698

    Article  PubMed  CAS  Google Scholar 

  • Miyagishi R, Kikuchi S, Fukazawa T et al. (1995) Macrophage inflammatory protein-1 in the cere-brospinal fluid of patients with multiple sclerosis and other inflammatory neurological diseases. J Neuro Sci 129:223-227

    Article  CAS  Google Scholar 

  • Mizokami MM, Hu P, Khawli LA et al. (2003) Chimeric TNT-3/murine interferon-γ fusion protein for the immunotherapy of solid malignancies. Hybridoma Hybridomics 22:197-207

    Article  CAS  Google Scholar 

  • Mocellin S, Rossi CR, Lise M et al. (2002) Adjuvant immunotherapy for solid tumors: From promise to clinical application. [Review]. Cancer Immunol Immunother 5:1583-1595

    Google Scholar 

  • Mogi S, Sakurai J, kohsaka T et al. (2000) Tumour rejection by gene transfer of 4-1BB ligand into a CD80+ murine squamous cell carcinoma and the requirements of co-stimulatory molecules on tumour and host cells. Immunology 101:541-547

    Article  PubMed  CAS  Google Scholar 

  • Morikawa K, Fidler IJ (1989) Heterogeneous response of human colon cancer cells to the cytostatic and cytotoxic effects of recombinant human cytokines: Interferon-alpha, interferon-gamma, tumor necrosis factor, and interleukin-1. J Biol Response Mod 8:206-218

    PubMed  CAS  Google Scholar 

  • Moro M, Gasparri AM, Pagano S et al. (1999) Induction of therapeutic T-cell immunity by tumor targeting with soluble recombinant B7-immunoglobulin costimulatory molecules. Cancer Res 59:2650-2656

    PubMed  CAS  Google Scholar 

  • Moser B, Loetscher P (2001) Lymphocyte traffic control by chemokines. Nature Immunol 2:123-128

    Article  CAS  Google Scholar 

  • Naruse K, Ueno M, Satoh T et al. (1996) A YAC contig of the human CC chemokine genes clus-tered on chromosome 17q11.2. Genomics 34:236-240

    Article  PubMed  CAS  Google Scholar 

  • Ng WF (2001) Human of CD4+CD25+ cells: A naturally occurring population of regulatory T cells. Blood 98:2736-2744

    Article  PubMed  CAS  Google Scholar 

  • Nocentini G, Riccardi C (2005) GITR: A multifaceted regulator of immunity belonging to the tumor necrosis factor receptor superfamily. Eur J Immunol 35:1016-1022

    Article  PubMed  CAS  Google Scholar 

  • North RJ, Awwad, M (1990) Elimination of cycling CD4+ suppressor T cells with an anti-mitotic drug releases non-cycling CD8+ T cells to cause regression of an advanced lymphoma. Immunology 71:90-95

    PubMed  CAS  Google Scholar 

  • Oppenheim JJ, Feldmann M (2001) Introduction to the role of cytokines in innate host defense and adaptive immunity. In: Oppenhein JJ, Feldmann M (eds) Cytokine reference. pp 3-20

    Google Scholar 

  • Onizuka S, Tawara I, Shimizu J et al. (1999) Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 59:3128-3133

    PubMed  CAS  Google Scholar 

  • Pardoll D (2003) Does the immune system see tumors as foreign or self? Annu Rev Immunol 21:807-839

    Article  PubMed  CAS  Google Scholar 

  • Parish CR (2003) Cancer immunotherapy: The past, the present, and the future. Immunol Cell Biol 81:106-113

    Article  PubMed  CAS  Google Scholar 

  • Parmiani G, Rivoltini L, Andreoda G et al. (2000) Cytokines in cancer therapy. Immunol Lett 74:41-44

    Article  PubMed  CAS  Google Scholar 

  • Pippig SD, Pena-Rossi C, Long J et al. (1999) Robust B cell immunity but impaired T cell prolif-eration in the absence of CD134 (OX40). J Immunol 163:6520-6529

    PubMed  CAS  Google Scholar 

  • Rakhmilevich AL, North RJ (1993) Presence of CD4+ T suppressor cells in mice rendered unresponsive to tumor antigens by intravenous injection of irradiated tumor cells. Int J Cancer 55:338-343

    Article  PubMed  CAS  Google Scholar 

  • Rakhmilevich AL, North RJ (1994) Elimination of CD4+ T cells in mice bearing an advanced sarcoma augments the antitumor action of interleukin-2. Cancer Immunol Immunother 38:107-112

    PubMed  CAS  Google Scholar 

  • Rao A, Luo C, Hogan PG (1997) Transcription factors of the Nf-AT family: Regulation and func-tion. Annual Rev Immunol 15:707-747

    Article  CAS  Google Scholar 

  • Rogers PR, Song J, Gramaglia I et al. (2001) OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity 15:445-455

    Article  PubMed  CAS  Google Scholar 

  • Ronchetti S, Zollo O, Bruscoli S et al. (2004) GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations. Eur J Immunol 34:613-622

    Article  PubMed  CAS  Google Scholar 

  • Runyon K, Lee K, Zuberek K et al. (2001) The combination of chemotherapy and systemic immunotherapy with soluble B7-immunoglobulin G leads to cure of murine leukemia and lym-phoma and demonstration of tumor-specific memory responses. Blood 97:2420-2426

    Article  PubMed  CAS  Google Scholar 

  • Sharifi J, Khawli LA, Hu P et al. (2001) Characterization of a phage display-derived human mon-oclonal antibody (NHS76) counterpart to chimeric TNT-1 directed against necrotic regions of solid tumors. Hybridoma Hybridomics 20:305-312

    Article  CAS  Google Scholar 

  • Sharifi J, Khawli LA, Hu P et al. (2002) Generation of human interferon gamma and tumor necrosis alpha chimeric TNT-3 fusion proteins. Hybridoma Hybridomics 21:421-432

    Article  CAS  Google Scholar 

  • Shevach EM (2000) Suppressor T cells: Rebirth, function and homeostasis. Curr Biol 10:R572-R575

    Article  PubMed  CAS  Google Scholar 

  • Shevach EM (2001) Certified professionals: CD4+CD25+ suppressor T cells. J Exp Med 193:F41-F46

    Article  PubMed  CAS  Google Scholar 

  • Shevach EM (2002) CD4+CD25+ suppressor T cells: More questions than answers. Nat Rev Immunol 2:389-400

    PubMed  CAS  Google Scholar 

  • Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+CD4+ T cells: A common basis between tumor immunity and autoimmunity. J Immunol 163:5211-5218

    PubMed  CAS  Google Scholar 

  • Silagi S, Shaefer A (1986) Successful immunotherapy of mouse melanoma and sarcoma with rIL-2 and cyclophosphamide. J Biol Response Mod 5:411-422

    PubMed  CAS  Google Scholar 

  • Singh NP, Yolcu ES, Taylor DD et al. (2003) A novel approach to cancer immunotherapy: Tumor cells decorated with CD80 generate effective antitumor immunity. Cancer Res 6:4067-4073

    Google Scholar 

  • Smith KA (1993) Lowest dose interleukin-2 immunotherapy. Blood 81:1414-1423

    PubMed  CAS  Google Scholar 

  • Smyth MJ, Godfrey DI, Trapani JA (2001) A fresh look at tumor immunosurveillance and immunotherapy. Nature Immunol 2:293-299

    Article  CAS  Google Scholar 

  • Somasundaram R, Jacob L (2002) Inhibition of cytolytic T lymphocyte proliferation by autologous CD4+CD25+ regulatory T cells in a colorectal carcinoma patient is mediated by transforming growth factor-β. Cancer Res 62:5267-5272

    PubMed  CAS  Google Scholar 

  • Sone S, Ogura T (1994) Local interleukin-2 therapy for cancer, and its effect induction mecha-nisms. Oncology 51:170-176

    Article  PubMed  CAS  Google Scholar 

  • Stephens LA, Mottet C, Mason D et al. (2001) Human of CD4+CD25+ thymocytes and peripheral T cells have immune suppressive activity. Eur J Immunol 31:1247-1254

    Article  PubMed  CAS  Google Scholar 

  • Sutmuller RP, van Duivenvoorde LM, van Elsas A et al. (2001) Synergism of cytotoxic T lymphocyte-associated antigen-4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lym-phocyte responses. J Exp Med 194:823-832

    Article  PubMed  CAS  Google Scholar 

  • Sturmhoefel K, Lee K, Gray GS et al. (1999) Potent activity of soluble B7-IgG fusion proteins in therapy of established tumors and as vaccine adjuvant. Cancer Res 59:4964-4972

    PubMed  CAS  Google Scholar 

  • Tanaka H, Tanaka J, Kjaergaard J et al. (2002) Depletion of CD4+CD25+ regulatory cells aug-ments the generation of specific immune T cells in tumor-draining lymph nodes. J Immunother 25:207-217

    Article  PubMed  CAS  Google Scholar 

  • Takeda I, Ine S, Killeen N et al. (2004) Distinct roles for the OX40-OX40 ligand interaction in regulatory and nonregulatory T cells. J Immunol 172:3580-3589

    PubMed  CAS  Google Scholar 

  • Thelen M (2001) Dancing to the tune of chemokines. Nature Immunol 2:129-134

    Article  CAS  Google Scholar 

  • Townsend SE, Allison JP (1993) Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 259:368-369

    Article  PubMed  CAS  Google Scholar 

  • Valzasina B, Guiducci C, Dislich H et al. (2005) Triggering of OX40 (CD134) on CD4+CD25+ T cells blocks their inhibitory activity: A novel regulatory role for OX40 and its comparison with GITR. Blood 105:2845-2851

    Article  PubMed  CAS  Google Scholar 

  • Vinay DS, Kwon BS (1998) Role of 4-1BB in immune responses. Semin Immunol 10:481-489

    Article  PubMed  CAS  Google Scholar 

  • Waldmann TA (2003) Immunotherapy: Past, present, and future. Nature Med 9:269-277

    Article  PubMed  CAS  Google Scholar 

  • Wang HC, Klein JR (2001) Multiple levels of activation of murine CD8+ intraepithelial lympho-cytes defined by OX40 (CD134) expression: Effects on cell-mediated cytotoxicity, IFN-gamma, and IL-10 regulation. J Immunol 167:6717-6723

    PubMed  CAS  Google Scholar 

  • Weinberg AD, Wegmann KW, Funatake C et al. (1999) Blocking OX40/OX40 ligand interaction in vitro and in vivo leads to decreased T cell function and amelioration of experimental allergic encephalomyelitis. J Immunol 162:1818-1826

    PubMed  CAS  Google Scholar 

  • Wen T, Bukczynski J, Watts TH (2002) 4-1BB ligand-mediated costimulation of human T cells induces CD4 and CD8 T cell expansion, cytokine production, and the development of cytolytic effector function. J Immunol 168:4897-4906

    PubMed  CAS  Google Scholar 

  • Yamaguchi N, Hiraoka S-I, Mukai T et al. (2004) Induction of tumor regression by administration of B7-Ig fusion proteins: Mediation by type 2 CD8+ T-cells and dependence on IL-4 produc-tion. J Immunol 172:1347-1354

    PubMed  CAS  Google Scholar 

  • Yu L, Ju D, Chen W et al. (2006) I-131 chTNT Radioimmunotherapy of 43 patients with advanced lung cancer. Cancer Biother Radiopharm 21:5-14

    Article  PubMed  Google Scholar 

  • Zhang N, Sadun RE, Arias RS et al. (2007) Targeted and untargeted CD137L fusion proteins for the immunotherapy of experimental solid tumors. Clinical Cancer Res 13:2758-2767

    Article  CAS  Google Scholar 

  • Zheng G, Chen A, Sterner RE et al. (2001) Induction of autitumor immunity via intratumoral tetra-costimulator protein transfer. Cancer Res 61:8127-8134

    PubMed  CAS  Google Scholar 

  • Zheng G, Wang B, Chen A (2004) The 4-1BB costimulation augments the proliferation of CD4+CD25+ regulatory T cells. J Immunol 173:2428-2434

    PubMed  CAS  Google Scholar 

  • Zou W (2005) Immunosuppressive networks in the tumor environment and their therapeutic rele-vance. Nature Rev Cancer 5:263-74

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khawli, L.A., Hu, P., Epstein, A.L. (2008). Cytokine, Chemokine, and Co-Stimulatory Fusion Proteins for the Immunotherapy of Solid Tumors. In: Chernajovsky, Y., Nissim, A. (eds) Therapeutic Antibodies. Handbook of Experimental Pharmacology, vol 181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73259-4_13

Download citation

Publish with us

Policies and ethics