Skip to main content

Low-Energy Physical Properties of Edge States in Nanographite Systems

  • Chapter
Physics of Zero- and One-Dimensional Nanoscopic Systems

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 156))

  • 860 Accesses

Abstract

Recent advances in nanotechnology make it possible to fabricate ultra small artificial physical systems like quantum dot, quantum interferometer, quantum wire, etc. in which quantum effects are experimentally observable. Both from the perspective of fundamental physics or potential applications, these artificial systems have generated a lot of excitement as they enabled the realization of a remarkable variety of physical phenomena such as the quantum Hall effect, ballistic transport, Aharonov-Bohm effect, universal conductance uctuation, Kondo effect [1] etc. arising out of the quantum effects. Among such artificial systems, the nanoscopic carbon systems like carbon nanotubes [2–4] and nanographite [5–7] have received enormous attention not only for their intriguing form, but also for their unusual physical properties. In these systems, the geometry of sp2 carbon networks crucially affects the electronic states near Fermi surface [8–10]. Studies with scanning tunneling microscopy and spectroscopy have confirmed the connection between the electronic states of single wall carbon nanotubes (SWCN) and their geometry [11, 12].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Imry: Introduction to Mesoscopic Physics (Oxford University Press 1997); S. Datta: Electronic Transport in Mesoscopic Systems (Cambridge University Press 1995)

    Google Scholar 

  2. S. Iijima: Nature 354, 56 (1991)

    Article  CAS  Google Scholar 

  3. M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund: Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego 1996)

    Google Scholar 

  4. R. Saito, G. Dresselhaus, M. S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998)

    Google Scholar 

  5. M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe: J. Phys. Soc. Jpn. 65, 1920 (1996)

    Article  CAS  Google Scholar 

  6. L. G. Cançado, M. A. Pimenta, B. R. A. Neves, G. Medeiros-Ribeiro, T. Enoki, Y. Kobayashi, K. Takai, K. Fukui, M. S. Dresselhaus, R. Saito, A. Jorio: Phys. Rev. Lett. 93, 047403 (2004)

    Article  Google Scholar 

  7. E. Dujardin, T. Thio, H. Lezec, T. Ebbesen: Appl Phys. Lett. 79, 2474 (2001)

    Article  CAS  Google Scholar 

  8. R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus: Appl. Phys. Lett. 60, 2204 (1992)

    Article  CAS  Google Scholar 

  9. R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus: Phys. Rev. B 46, 1804 (1992)

    Article  CAS  Google Scholar 

  10. N. Hamada, S. Sawada, A. Oshiyama: Phys. Rev. Lett. 68, 1579 (1992)

    Article  CAS  Google Scholar 

  11. J. W. G. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker: Nature 391, 59 (1998)

    Article  Google Scholar 

  12. T. W. Odom, J. Huang, P. Kim, C. M. Lieber: Nature 391, 62 (1998)

    Article  CAS  Google Scholar 

  13. K. Nakada, M. Fujita, G. Dresselhaus, M. S. Dresselhaus: Phys. Rev. B 54, 17954 (1996)

    Article  CAS  Google Scholar 

  14. K. Wakabayashi, M. Fujita, H. Ajiki, M. Sigrist: Phys. Rev. B 59, 8271 (1999)

    Article  CAS  Google Scholar 

  15. K. Wakabayashi: Ph.D Thesis, Tsukuba University (2000)

    Google Scholar 

  16. K. Wakabayashi, M. Sigrist: Phys. Rev. Lett. 84, 3390 (2000)

    Article  CAS  Google Scholar 

  17. K. Wakabayashi: Phys. Rev. B 64, 125428 (2001)

    Article  Google Scholar 

  18. K. Wakabayashi: Electronic and Magnetic Properties of Nanographite. In: Carbon-based Magnetism—An Overview of the Magnetism of Metal Free Carbon-based Compounds and Materials, ed by T. Makarova, F. Palacio (Elsevier 2006) pp 279–304

    Google Scholar 

  19. Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada, H. Fukuyama: cond-mat/0404069 (2004)

    Google Scholar 

  20. Y. Shibayama, H. Sato, T. Enoki, M. Endo: Phys. Rev. Lett. 84, 1744 (2000)

    Article  CAS  Google Scholar 

  21. O. E. Andersson, B. L. V. Prasad, H. Sato, T. Enoki, Y. Hishiyama, Y. Kaburagi, M. Yoshikawa, S. Bandow: Phys. Rev. B 58, 16387 (1998)

    Article  CAS  Google Scholar 

  22. K. Han, D. Spemann, P. Esquinazi, R. Höhne, V. Riede, T. Butz: Adv. Mater. 15, 1719 (2003)

    Article  CAS  Google Scholar 

  23. P. Esquinazi, D. Spemann, R. Höhne, A. Setzer, K.-H. Han, T. Butz: Phys. Rev. Lett. 91, 227201 (2003)

    Article  CAS  Google Scholar 

  24. P. R. Wallace: Phys. Rev. 71, 622 (1947)

    Article  CAS  Google Scholar 

  25. M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, H. A. Goldberg: Graphite Fibers and Filaments (Springer-Verlag 1988)

    Google Scholar 

  26. K. Tanaka, S. Yamashita, H. Yamabe, T. Yamabe: Synth. Met. 17, 143 (1987)

    Article  CAS  Google Scholar 

  27. K. Kobayashi: Phys. Rev. B 47, 1757 (1993)

    Article  Google Scholar 

  28. J. C. Slonczewski, P. R. Weiss: Phys. Rev. 109, 272 (1958)

    Article  CAS  Google Scholar 

  29. J. M. Luttinger: Phys. Rev. 84, 814 (1951)

    Article  Google Scholar 

  30. W. Kohn: Phys. Rev. 115, 1460 (1959)

    Article  Google Scholar 

  31. J. W. McClure: Phys. Rev. 104, 666 (1956)

    Article  CAS  Google Scholar 

  32. H. Ajiki, T. Ando: J. Phys. Soc. Jpn. 62, 1255 (1993)

    Article  CAS  Google Scholar 

  33. H. Ajiki, T. Ando: J. Phys. Soc. Jpn. 65, 505 (1996)

    Article  CAS  Google Scholar 

  34. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov: Nature 438, 197 (2005)

    Article  CAS  Google Scholar 

  35. D. J. Klein: Chem. Phys. Lett. 217, 261 (1994)

    Article  Google Scholar 

  36. J. P. Lu: Phys. Rev. Lett. 74, 1123 (1995)

    Article  CAS  Google Scholar 

  37. H. Ajiki, T. Ando: J. Phys. Soc. Jpn. 62, 2470 (1993)

    Article  CAS  Google Scholar 

  38. M. Fujita, M. Igami, K. Nakada: J. Phys. Soc. Jpn. 66, 1864 (1997)

    Article  CAS  Google Scholar 

  39. Y. Miyamoto, K. Nakada, M. Fujita: Phys. Rev. B 59, 9858 (1999) [Errata: 60, 16211 (1999)]

    Article  CAS  Google Scholar 

  40. E. H. Lieb: Phys. Rev. Lett. 62, 1201 (1989)

    Article  Google Scholar 

  41. L. Pitaevskii, S. Stringari: J. Low. Temp. Phys. 85, 377 (1991)

    Article  Google Scholar 

  42. E. Dagotto, T. M. Rice: Science 271, 618 (1996)

    Article  CAS  Google Scholar 

  43. K. Wakabayashi, M. Sigrist, M. Fujita: J. Phys. Soc. Jpn. 67, 2089 (1998); see also H. Yoshioka: J. Phys. Soc. Jpn. 72, 2145 (2003)

    Article  CAS  Google Scholar 

  44. K. Kusakabe, M. Maruyama: Phys. Rev. B 67, 092406 (2003)

    Article  Google Scholar 

  45. T. L. Makarova: Semiconductors 38, 615 (2004)

    Article  CAS  Google Scholar 

  46. K. Wakabayashi, K. Harigaya: J. Phys. Soc. Jpn. 72, 998 (2003)

    Article  CAS  Google Scholar 

  47. S. Okada, A. Oshiyama: Phys. Rev. Lett. 87, 146803 (2001)

    Article  CAS  Google Scholar 

  48. P. W. Anderson, D. J. Thouless, E. Abrahams, D. S. Fisher: Phys. Rev. B 22, 3519 (1980)

    Article  Google Scholar 

  49. M. Büttiker, Y. Imry, R. Landauer, S. Pinhas: Phys. Rev. B 31, 6207 (1985)

    Article  Google Scholar 

  50. R. Landauer: Z. Phys. B 68, 217 (1987)

    Article  Google Scholar 

  51. A. MacKinnon: Z. Phys. B 59, 385 (1985)

    Article  CAS  Google Scholar 

  52. T. Ando: Phys. Rev. B 44, 8017 (1991)

    Article  Google Scholar 

  53. R. Tamura, M. Tsukada: Phys. Rev. B 58, 8120 (1998)

    Article  CAS  Google Scholar 

  54. M. Büttiker, Y. Imry, M. Ya. Azbel: Phys. Rev. A 30, 1982 (1984)

    Article  Google Scholar 

  55. P. S. Deo, A. M. Jayannavar: Mod. Phys. Lett. B 10, 787 (1996)

    Article  CAS  Google Scholar 

  56. C.-M. Ryu, S. Y. Cho, Phys. Rev. B 58, 3572 (1998)

    Article  CAS  Google Scholar 

  57. H.-W. Lee: Phys. Rev. Lett. 82, 2358 (1999)

    Article  CAS  Google Scholar 

  58. T. Taniguchi, M. Büttiker: Phys. Rev. B 60, 13814 (1999)

    Article  CAS  Google Scholar 

  59. A. Yacoby, M. Heiblum, D. Mahalu, H. Shtrikman: Phys. Rev. Lett. 74, 4047 (1995)

    Article  CAS  Google Scholar 

  60. R. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Umansky, H. Shtrikman: Nature 385, 417 (1997)

    Article  CAS  Google Scholar 

  61. P. S. Deo, A. M. Jayannavar: Phys. Rev. B 50, 11629 (1994)

    Article  CAS  Google Scholar 

  62. R. Sordan, K. Nikolić: Phys. Rev. B 52, 9007 (1995)

    Article  CAS  Google Scholar 

  63. Z. Shao, W. Porod, C. S. Lent: Phys. Rev. B 49, 7453 (1994)

    Article  Google Scholar 

  64. W. Porod, Z. Shao, C. S. Lent: Phys. Rev. B 48, 8495 (1993); W. Porod, Z. Shao, C. S. Lent: Appl. Phys. Lett. 61, 1350 (1992)

    Article  CAS  Google Scholar 

  65. J. Wang, Y. Wang, H. Guo: Appl. Phys. Lett. 65, 1793 (1994)

    Article  Google Scholar 

  66. F. Sols, M. Macucci, U. Ravaioli, K. Hess: J. Appl. Phys. 66, 3892 (1989)

    Article  Google Scholar 

  67. H. Xu, W. Sheng: Superlattices and Microstructures 25, 79 (1999)

    Article  CAS  Google Scholar 

  68. H. Xu, W. Sheng: Phys. Rev. B 57, 11903 (1998)

    Article  CAS  Google Scholar 

  69. U. Aeberhard, K. Wakabayashi, M. Sigrist: Phys. Rev. B 72, 075328 (2005)

    Article  Google Scholar 

  70. U. Fano: Phys. Rev. 124, 1866 (1961)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wakabayashi, K. (2007). Low-Energy Physical Properties of Edge States in Nanographite Systems. In: Karmakar, S.N., Maiti, S.K., Chowdhury, J. (eds) Physics of Zero- and One-Dimensional Nanoscopic Systems. Springer Series in Solid-State Sciences, vol 156. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72632-6_5

Download citation

Publish with us

Policies and ethics