Skip to main content

Low Temperature Decoherence and Relaxation in Charge Josephson Junction Qubits

  • Chapter
Physics of Zero- and One-Dimensional Nanoscopic Systems

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 156))

  • 836 Accesses

Abstract

Research interest in controllable two-level systems, which have been enthusiastically called quantum bits or qubits, has grown enormously during the last decade. Behind a huge burst of activity in this field stands an idea of what is possible in principle but extremely difficult to achieve instrumentally - the fascinating idea of quantum computing. The very principle of quantum superposition allows many operations to be performed on a quantum computer in parallel, while an ordinary ‘classical’ computer, however fast, can only handle one operation at a time. The enthusiasm is not held back by the fact that exploiting quantum parallelism is by no means straightforward, and there exist only a few algorithms (e.g., [1, 2]) for which the quantum computer (if ever built) would offer an essential improvement in comparison with its ‘classical’ counterpart. Even if other uses of quantum computing prove limited (which might or might not be the case), its existence would most certainly lead to a breakthrough in simulations of real physical many-particle systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. W. Shor: SIAM Journal on Computing 26, 1484 (1997)

    Article  Google Scholar 

  2. L. K. Grover: Phys. Rev. Lett. 79, 325 (1997)

    Article  CAS  Google Scholar 

  3. D. P. DiVincenzo, D. Loss: J. Magn. Magn. Mater. 200, 202 (1999); Phys. Rev. B 71, 035318 (2005)

    Article  CAS  Google Scholar 

  4. E. Paladino, L. Faoro, G. Falci, R. Fazio: Phys. Rev. Lett. 88, 228304 (2002)

    Article  CAS  Google Scholar 

  5. Y. M. Galperin, B. L. Altshuler, D. V. Shantsev: cond-mat/0312490 (2003)

    Google Scholar 

  6. Y. M. Galperin, B. L. Altshuler, J. Bergli, D. V. Shantsev: Phys. Rev. Lett. 96, 097009 (2006)

    Article  CAS  Google Scholar 

  7. A. Grishin, I. V. Yurkevich, I. V. Lerner: Phys. Rev. B 72, 060509 (2005)

    Article  Google Scholar 

  8. O. Astafiev, Y. A. Pashkin, Y. Nakamura, T. Yamamoto, J. S. Tsai: Phys. Rev. Lett. 93, 267007 (2004)

    Article  CAS  Google Scholar 

  9. A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, W. Zwerger: Rev. Mod. Phys. 59, 1 (1987)

    Article  CAS  Google Scholar 

  10. H. P. Breuer, F. Petruccione: The Theory of Open Quantum Systems (Oxford University Press, Oxford 2002)

    Google Scholar 

  11. D. P. DiVincenzo: In: Mesoscopic Electron Transport, NATO ASI Series E: Applied Sciences, vol 345, ed by L. Kouwenhoven et al. (Kluwer, Dordrecht 1997) p. 657

    Google Scholar 

  12. Y. Makhlin, G. Schon, A. Shnirman: Rev. Mod. Phys. 73, 357 (2001)

    Article  Google Scholar 

  13. Y. Nakamura, Y. A. Pashkin, J. S. Tsai: Nature 398, 786 (1999)

    Article  CAS  Google Scholar 

  14. Y. A. Pashkin, T. Yamamoto, O. Astafiev, Y. Nakamura, D. V. Averin, J. S. Tsai: Nature 421, 823 (2003)

    Article  CAS  Google Scholar 

  15. C. H. van der Wal, A. C. J. ter Haar, F. K. Wilhelm, R. N. Schouten, C. J. P. M. Harmans, T. P. Orlando, S. Lloyd, J. E. Mooij: Science 290, 773 (2000)

    Article  Google Scholar 

  16. D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, M. H. Devoret: Science 296, 886 (2002)

    Article  CAS  Google Scholar 

  17. Y. Yu, S. Y. Han, X. Chu, S. I. Chu, Z. Wang: Science 296, 889 (2002)

    Article  CAS  Google Scholar 

  18. L. Faoro, J. Bergli, B. L. Altshuler, Y. M. Galperin: Phys. Rev. Lett. 95, 046805 (2005)

    Article  Google Scholar 

  19. G. D. Mahan: Many-Particle Physics (Plenum, New York 1990)

    Google Scholar 

  20. J. Rammer, H. Smith: Rev. Mod. Phys. 58, 323 (1986)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grishin, A., Yurkevich, I.V., Lerner, I.V. (2007). Low Temperature Decoherence and Relaxation in Charge Josephson Junction Qubits. In: Karmakar, S.N., Maiti, S.K., Chowdhury, J. (eds) Physics of Zero- and One-Dimensional Nanoscopic Systems. Springer Series in Solid-State Sciences, vol 156. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72632-6_4

Download citation

Publish with us

Policies and ethics