Skip to main content

Understanding and Predicting Radiation-Associated Normal Tissue Injury: A Global and Historical Perspective

  • Chapter
  • First Online:
ALERT - Adverse Late Effects of Cancer Treatment

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Radiation injury to normal tissues has been recognized for many decades, and is dependent upon a multitude of factors, including radiation dose and fractionation and volume of tissue or organ exposed to radiation. Since the 1980s, technologic innovations in imaging, radiation planning and radiation delivery have allowed for more accurate quantification of dose delivery to tissues, which in turn has resulted in a burgeoning research effort to understand and quantify risks to normal tissues after radiation. This chapter will broadly discuss factors that potentially influence the risk of radiation-normal tissue injury, provide a framework for understanding the differences and similarities between organs in their response to radiation, and describe additional considerations that might be more relevant in the future. It also reviews the major efforts in past 2 decades, namely the 1991 Emami, Lyman et al. review and the recent 2010 QUANTEC reviews, which compiled published data, summarized this data, and provided recommended organ dose/volume constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn SJ, Kahn D, Zhou S et al (2005) Dosimetric and clinical predictors for radiation-induced esophageal injury. Int J Radiat Oncol Biol Phys 61:335–347

    Article  PubMed  Google Scholar 

  • Benedict SH, Yenice KM, Followill D et al (2010) Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys 37:4078–4101

    Article  PubMed  Google Scholar 

  • Boersma LJ, Damen EM, de Boer RW et al (1993) A new method to determine dose-effect relations for local lung-function changes using correlated SPECT and CT data. Radiother Oncol 29:110–116

    Article  PubMed  CAS  Google Scholar 

  • Burman C, Kutcher GJ, Emami B et al (1991) Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys 21:123–135

    Article  PubMed  CAS  Google Scholar 

  • Chapet O, Kong FM, Lee JS et al (2005) Normal tissue complication probability modeling for acute esophagitis in patients treated with conformal radiation therapy for non-small cell lung cancer. Radiother Oncol J Eur Soc Ther Radiol Oncol 77:176–181

    Article  Google Scholar 

  • Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122

    Article  PubMed  CAS  Google Scholar 

  • Fan M, Marks LB, Hollis D et al (2001a) Can we predict radiation-induced changes in pulmonary function based on the sum of predicted regional dysfunction? J Clin Oncol 19:543–550

    PubMed  CAS  Google Scholar 

  • Fan M, Marks LB, Lind P et al (2001b) Relating radiation-induced regional lung injury to changes in pulmonary function tests. Int J Radiat Oncol Biol Phys 51:311–317

    Article  PubMed  CAS  Google Scholar 

  • Flickinger JC, Kondziolka D, Lunsford LD et al (2000) Development of a model to predict permanent symptomatic postradiosurgery injury for arteriovenous malformation patients. Arteriovenous malformation radiosurgery study group. Int J Radiat Oncol Biol Phys 46:1143–1148

    Article  PubMed  CAS  Google Scholar 

  • Glatstein E (2008) Hypofractionation, long-term effects, and the alpha/beta ratio. Int J Radiat Oncol Biol Phys 72:11–12

    Article  PubMed  Google Scholar 

  • Glatstein E (2011) The omega on alpha and beta. Int J Radiat Oncol Biol Phys 81:319–320

    Article  PubMed  Google Scholar 

  • Hall EJ, Giaccia AJ (2012) Radiobiology for the radiobiologist, 7th edn. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Hendry JH, Thames HD (1986) The tissue-rescuing unit. Br J Radiol 59:628–630

    Article  PubMed  CAS  Google Scholar 

  • Jin JY, Kong FM, Chetty IJ et al (2010) Impact of fraction size on lung radiation toxicity: hypofractionation may be beneficial in dose escalation of radiotherapy for lung cancers. Int J Radiat Oncol Biol Phys 76:782–788

    Google Scholar 

  • Kutcher GJ, Burman C, Brewster L et al (1991) Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations. Int J Radiat Oncol Biol Phys 21:137–146

    Article  PubMed  CAS  Google Scholar 

  • Lyman JT (1985) Complication probability as assessed from dose-volume histograms. Radiat Res. (Supplement) 8:S13–S19

    Article  CAS  Google Scholar 

  • Lyman JT, Wolbrast AB (1987) Optimization of radiation therapy III: a method of assessing complication probabilities from dose-volume histograms. Int J Radiat Oncol Biol Phys 13:103

    Google Scholar 

  • Ma J, Zhang J, Zhou S et al (2009) Association between RT-induced changes in lung tissue density and global lung function. Int J Radiat Oncol Biol Phys 74:781–789

    Article  PubMed  Google Scholar 

  • Ma J, Zhang J, Zhou S et al (2010) Regional lung density changes after radiation therapy for tumors in and around thorax. Int J Radiat Oncol Biol Phys 76:116–122

    Article  PubMed  Google Scholar 

  • Mah K, Van Dyk J (1988) Quantitative measurement of changes in human lung density following irradiation. Radiother Oncol 11:169–179

    Article  PubMed  CAS  Google Scholar 

  • Marks LB, Carroll PR, Dugan TC, Anscher MS (1995) The response of the urinary bladder, urethra, and ureter to radiation and chemotherapy. Int J Radiat Oncol Biol Phys 31:1257–1280

    Google Scholar 

  • Marks LB (1996) The impact of organ structure on radiation response. Int J Radiat Oncol Biol Phys 34:1165–1171

    Article  PubMed  CAS  Google Scholar 

  • Marks LB, Munley MT, Spencer DP et al (1997) Quantification of radiation-induced regional lung injury with perfusion imaging. Int J Radiat Oncol Biol Phys 38:399–409

    Article  PubMed  CAS  Google Scholar 

  • Marks LB, Ten Haken RK, Martel MK (2010a) Guest editor’s introduction to QUANTEC: a users guide. Int J Radiat Oncol Biol Phys 76:S1–S2

    Article  PubMed  Google Scholar 

  • Marks LB, Yorke ED, Jackson A et al (2010b) Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 76:S10–S19

    Article  PubMed  Google Scholar 

  • Marks LB, Bentzen SM, Deasy JO et al (2010c) Radiation dose volume effects in the lung. Int J Radiat Oncol Biol Phys 76:S70–S76

    Article  PubMed  Google Scholar 

  • Mendelsohn ML (1969) The biology of dose-limiting tissuses. In: Time and dose relationship in radiation biology as applied to radiotherapy, Brookhaven National Laboratory [BNL] Report 5023 (C-57), Brookhaven National Laboratory, Upton, p 54

    Google Scholar 

  • Michalowski A, Wheldon TE, Kirk J (1984) Can cell survival parameters be deduced from non clonogenic assays of radiation damage to normal tissues? Br J Cancer Suppl 6:257–261

    PubMed  CAS  Google Scholar 

  • Milano MT, Constine LS, Okunieff P (2007) Normal tissue tolerance dose metrics for radiation therapy of major organs. Semin Radiat Oncol 17:131–140

    Article  PubMed  Google Scholar 

  • Milano MT, Constine LS, Okunieff P (2008) Normal tissue toxicity after small field hypofractionated stereotactic body radiation. Radiat Oncol 3:36

    Article  PubMed  Google Scholar 

  • Milano MT, Marks LB, Constine LS (2012) Survivorship and late effects. In: Gunderson LL, Tepper JE (eds) Clinical radiation oncology, 3rd edn. Churchill Livingstone, Philadelphia, PA

    Google Scholar 

  • Rubin P (1978) Clinical oncology: a multidisciplinary approach for physicians and students, 5th edn. American Cancer Society, Inc

    Google Scholar 

  • Rubin P, Casarett GW (1968) Clinical radiation pathology. W. B. Saunders, Philadelphia

    Google Scholar 

  • Rubin P, Casarett GW (1972) A direction for clinical radiation oncology. In: Vaeth JM (ed) Frontiers of radiation therapy and oncology VI. University Park Press, Baltimore, pp 1–16

    Google Scholar 

  • Seppenwoolde Y, De Jaeger K, Boersma LJ et al (2004) Regional differences in lung radiosensitivity after radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 60:748–758

    Article  PubMed  Google Scholar 

  • Ten Haken RK, Lawrence TS, Dawson LA () Prediction of radiation-induced liver disease by Lyman normal-tissue complication probability model in three-dimensional conformal radiation therapy for primary liver carcinoma: in regards to Xu et al. (Int J Radiat Oncol Biol Phys 2006;65:189–195). Int J Radiat Oncol Biol Phys 66:1272; author reply 1272–1273

    Google Scholar 

  • Ten Haken RK, Martel MK, Kessler ML et al (1993) Use of Veff and iso-NTCP in the implementation of dose escalation protocols. Int J Radiat Oncol Biol Phys 27:689–695

    Article  PubMed  Google Scholar 

  • Vanderstraeten B, Reynaert N, Paelinck L et al (2006) Accuracy of patient dose calculation for lung IMRT: a comparison of Monte Carlo, convolution/superposition, and pencil beam computations. Med Phys 33:3149–3158

    Article  PubMed  Google Scholar 

  • Withers HR, Taylor JM (1993) Critical volume model. Int J Radiat Oncol Biol Phys 25:151–152

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Portions of this work are adapted from Milano et al. (2012) (in Gunderson and Tepper), Marks et al. (2010b) (QUANTEC review), and Rubin (1978) (Clinical Oncology Book)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Milano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Milano, M.T., Rubin, P., Marks, L.B. (2014). Understanding and Predicting Radiation-Associated Normal Tissue Injury: A Global and Historical Perspective. In: Rubin, P., Constine, L., Marks, L. (eds) ALERT - Adverse Late Effects of Cancer Treatment. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72314-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72314-1_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72313-4

  • Online ISBN: 978-3-540-72314-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics