Skip to main content

Bioengineering of Irradiated Normal Tissues by Bone Marrow Stem Cells

  • Chapter
  • First Online:
ALERT - Adverse Late Effects of Cancer Treatment

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 1360 Accesses

Abstract

Irradiation damage of normal tissue during radiation therapy is repaired by stem cells and differentiated progeny derived from both the irradiated tissue and from cells migrating through the blood from the bone marrow. The bone marrow contains both pluripotential hematopoietic stem cells and their committed progenitors, and bone marrow stromal cells (mesenchymal stem cells). Using defined conditions in vitro or in animal model systems in vivo, each of these marrow origin cell populations has been shown to differentiate into multiple cell lineages. Irradiation of epithelial organs stimulates migration of bone marrow cells to sites of injury where incorporation leads to either repair of acute injury or to formation of late fibrosis. The degree to which marrow origin stem and committed progenitor cells contribute to repair of irradiation damage is not known. This chapter discusses the roles of the different marrow origin cell populations in repair of irradiation-induced damage to epithelial organs.

Supported by Research Grants: RO1CA11927 and RO1CA083876.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams GB, Martin RP, Alley IR et al (2007) Therapeutic targeting of a stem cell niche. Nat Biotechnol 25:238–242

    Article  PubMed  CAS  Google Scholar 

  • Aird WC, Jahroudi N, Weiler-Guettler H, Rayburn HB, Rosenberg RD (1995) Human von Willebrand factor gene sequences target expression to a subpopulation of endothelial cells in transgenic mice. Proc Natl Acad Sci U S A 92:4567

    Google Scholar 

  • Albera C, Polak JM, Janes S, Griffiths MJD, Alison MR, Wright NA, Navaratnarasah S, Poulsom R, Jeffrey R, Fisher C, Burke M, Bishop AE (2005) Repopulation of human pulmonary epithelium by bone marrow cells: a potential means to promote repair. Tissue Eng 11:7–8

    Article  Google Scholar 

  • Anklesaria P, FitzGerald TJ, Kase K et al (1989) Improved hematopoiesis in anemic S1/S1d mice by therapeutic transplantation of a hematopoietic microenvironment. Blood 74:1144–1152

    PubMed  CAS  Google Scholar 

  • Ara T, Tokoyoda K, Sugiyama T, Egawa T, Kawabata K, Nagasawa T (2003) Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity 19:257–267

    Article  PubMed  CAS  Google Scholar 

  • Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer association. Nature 30(421):499–506

    Article  Google Scholar 

  • Barberi T, Klivenyi P, Calingasan NY, Lee H, Kawamata H, Loonam K, Perrier AL, Bruses J, Rubio ME, Topf N, Tabar V, Harrison NL, Beal MF, Moore MAS, Studer L (2003) Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol 21(10):1200–1210

    Google Scholar 

  • Barnabe-Heider F, Frisen J (2008) Stem cells for spinal cord repair. Cell Stem Cell 3:16–20

    Article  PubMed  CAS  Google Scholar 

  • Boggs SS, Wilson SM, Smith WW (1973) Effects of endotoxin on hematopoiesis in irradiated and non-irradiated W/Wv mice. Rad Res 56:481

    Article  CAS  Google Scholar 

  • Boggs DR, Boggs SS, Ruscetti FW (1981) The W/Wv mouse as a model system for the study of aplastic anemia. In: Levine AS (ed) Proceedings of the conference on aplastic anemia: a stem cell disease, No. 81-1008. NIH Publication, San Francisco, p 197

    Google Scholar 

  • Bompais H, Chagraoui J, Canron X, Crisan M, Liu XH, Anjo A, Tolla-Le Port C, Leboeuf M, Charbord P, Bikfalvi A, Uzan G (2004) Human endothelial cells derived from circulating progenitors display specific functional properties compared with mature vessel wall endothelial cells. Blood 103(7):2577–2584

    Google Scholar 

  • Bonig H, Chudziak D, Priestley G, Papayannopoulou T (2009) Insights into the biology of mobilized hematopoietic stem/progenitor cells through innovative treatment schedules of the CXCR4 antagonist AMD3100. Exp Hematol 37:402–415

    Google Scholar 

  • Brazelton TR, Rossi FM, Keshet GI, Blau HM (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290:1775–1779

    Google Scholar 

  • Calvi LM, Adams GB, Weibrecht KW et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:844–848

    Article  Google Scholar 

  • Cancelas JA, Lee AW, Prabhakar R et al (2005) GTPases differentially integrate signals regulating hematopoietic stem cell localization. Nat Med 11:886–894

    Article  PubMed  CAS  Google Scholar 

  • Carlo-Stella C, Cesana C, Regazzi E et al (2000) Peripheral blood progenitor cell mobilization in healthy donors receiving recombinant human granulocyte colony-stimulating factor. Exp Hematol 28:216–224

    Article  PubMed  CAS  Google Scholar 

  • Carotta S, Pilat S, Mairhofer A, Schmidt U, Dolznig H, Steinlein P, Beug H (2004) Directed differentiation and mass cultivation of pure erythroid progenitors from mouse embryonic stem cells. Blood 104:1873–1880

    Article  PubMed  CAS  Google Scholar 

  • Cerdan C, Rouleau A, Bhatia M (2004) VEGF-A165 augments erythropoietic development form human embryonic stem cells. Blood 103:2504–2510

    Article  PubMed  CAS  Google Scholar 

  • Chadderton N, Millington-Ward S, Palfi A, O’Reilly M, Tuohy G, Humphries MM, Li T, Humphries P, Kenna PF, Farrar GJ (2009) Improved retinal function in a mouse model of dominant retinitis pigmentosa following AAV-delivered gene therapy. Mol Ther 17(4):593–599

    Google Scholar 

  • Chen LB, Jiang XB, Yang L (2004) Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells. World J Gastroenterol 10:3016–3020

    PubMed  CAS  Google Scholar 

  • Cheng L-C, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12(4):399–405

    Article  PubMed  CAS  Google Scholar 

  • Christopherson II KW, Hangoc G, Mantel CR, Broxmeyer HE (2004) Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 305:1000–1004

    Google Scholar 

  • Davoust N, Vuaillat C, Cavillon G, Domenget C, Hatterer E, Bernard A, Dumontel C, Jurdic P, Malcus C, Confavreux C, Belin MF, Nataf S (2006) Bone marrow CD34+/B220+ progenitors target the inflamed brain and display in vitro differentiation potential toward microglia. FASEB J 20:2081–2092

    Article  PubMed  CAS  Google Scholar 

  • Demedts M, Behr J, Buhl R, Costabel U, Dekhuijzen R, Jansen HM, MacNee W, Thomeer M, Wallaert B, Laurent F, Nicholson AG, Verbeken EK, Verschakelen J, Flower CDR, Capron F, Petruzzelli S, DeVuyst P, van den Bosch JMM, Rodriguez-Becerra E, Corvasce G, Lankhorst I, Sardina M, Montanari M (2005) High-dose acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med 353:2229–2242

    Google Scholar 

  • Deng W, Han Q, Liao L, Li C, Ge W, Zhao Z, You Sheng, Deng H, Murad F, Zhao RCH (2005) Engrafted bone marrow-derived Flk-1+ mesenchymal stem cells regenerate skin tissue. Tissue Eng 11:110–119

    Google Scholar 

  • Dexter TM, Allen TD, Lajtha LG (1977) Conditions controlling the proliferation of hematopoietic stem cells in vitro. J Cell Physiol 91:335–344

    Article  PubMed  CAS  Google Scholar 

  • Dickson GJ, Kwasniewska A, Mills KI, Lappin TRJ, Thompson A (2009) Hoxa6 potentiates short-term hematopoietic cell proliferation and extended self-renewal. Exp Hematol 37:322–333

    Google Scholar 

  • Dileto C, Travis EL (1996) Fibroblast radiosensitivity in vitro and lung fibrosis in vivo: comparison between a fibrosis-prone and fibrosis-resistant mouse strain. Radiat Res 146:61–67

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt JF (2001) Stem cell niches in the mouse airway. Am J Respir Cell Mol Biol 24:649–652

    Google Scholar 

  • Engelhardt JF, Yang Y, Stratford-Perricaudet LD, Allen ED, Kozarsky K, Perricaudet M, Yankaskas JR, Wilson JM (1993) Direct gene transfer of human CFTR into human bronchial epithelia of xenografts with E1-deleted adenoviruses. Nat Genet 4:27–34

    Article  PubMed  CAS  Google Scholar 

  • Epperly MW, Sikora CA, Defilippi S, Gretton JE, Greenberger JS (2003) Bone marrow origin of myofibroblasts in irradiation pulmonary fibrosis. Am J Resp Mol Cell Biol 29:213–224

    Article  CAS  Google Scholar 

  • Epperly MW, Osipov AN, Martin I, Kawai K, Borisenko GG, Jefferson M, Bernarding M, Greenberger JS, Kagan VE (2004a) Ascorbate as a “redox-sensor” and protector against irradiation-induced oxidative stress in 32D cl 3 hematopoietic cells and subclones overexpressing human manganese Superoxide Dismutase. Int J Radiat Oncol Biol Phys 58(3):851–861

    Article  PubMed  CAS  Google Scholar 

  • Epperly MW, Goff JP, Sikora CA, Shields DS, Greenberger JS (2004b) Bone marrow origin of cells with capacity for homing and differentiation to esophageal squamous epithelium. Radiat Res 162:233–240

    Article  PubMed  CAS  Google Scholar 

  • Epperly MW, Cao S, Zhang X, Franicola D, Kanai AJ, Greenberger EE, Greenberger JS (2007) Increased longevity of hematopoiesis in continuous bone marrow cultures derived from mtNOS−/− homozygous recombinant negative mice correlates with increased radioresistance of hematopoietic and bone marrow stromal cells. Exp Hematol 35:137–145

    Google Scholar 

  • Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242

    Article  PubMed  CAS  Google Scholar 

  • Franko AJ, Sharplin J (1994) Development of fibrosis after lung irradiation in relation to inflammation and lung function in a mouse strain prone to fibrosis. Radiat Res 140:347–355

    Article  PubMed  CAS  Google Scholar 

  • Friedenstein AJ, Lat-Zink NW, Grosheva AG, Gorskaya VF (1982) Microenvironment transfer by heterotopic transplantation of freshly cultured cells in porous sponges. Exp Hematol 10:217–227

    PubMed  CAS  Google Scholar 

  • Giangreco A, Arwert EN, Rosewell IR, Snyder J, Watt FM, Stripp BR (2009) Stem cells are dispensable for lung homeostasis but restore airways after injury. PNAS 106(23):9286–9291

    Google Scholar 

  • Gokhale AS, Epperly M, Glowacki J, Wang H, Wipf P, Pierce JG, Dixon T, Patrene K, Greenberger JS (2010) Small molecule GS-nitroxide ameliorate ionizing irradiation-induced delay in bone wound healing in a novel murine model. In vivo 24:377–384

    Google Scholar 

  • Goolsby J, Marty MC, Heletz D, Chiappelli J, Tashko G, Yarnell D, Fishman PS, Dhib-Jalbut S, Bever CT, Pessac B, Trisler D (2003) Hematopoietic progenitors express neural genes. PNAS 100:14926–14931

    Google Scholar 

  • Greenberger JS (1978) Sensitivity of corticosteroid-dependent, insulin-resistant lipogenesis in marrow preadipocytes of mutation diabetic-obese mice. Nature 275:752–754

    Article  PubMed  CAS  Google Scholar 

  • Greenberger JS (1991) Toxic effects on the hematopoietic microenvironment. Exp Hematol 19:1101–1109

    PubMed  CAS  Google Scholar 

  • Greenberger JS, Epperly MW (2007) Antioxidant therapeutic approaches toward amelioration of the pulmonary pathophysiological damaging effects of ionizing irradiation. Curr Respir Med Rev 3:29–37

    Google Scholar 

  • Greenberger JS, Epperly MW (2009) Bioengineering in the repair of irradiated normal tissue by bone marrow derived stem cell populations. Semi Radiat Oncol (19(2):133–139

    Google Scholar 

  • Greenberger JS, FitzGerald TJ, Kleason V, Anklesaria P, Bushnell D, Kase K, Sakakeeny MA (1988) Alteration in hematopoietic stem cell seeding and proliferation by low-dose-rate irradiation of bone marrow stromal cells in vitro. Int J Radiat Oncol Biol Phys 14:85–94

    Article  PubMed  CAS  Google Scholar 

  • Gronthos S, Graves SE, Ohta S, Simmons PJ (1994) The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. Blood 84:4164–4173

    PubMed  CAS  Google Scholar 

  • Gussoni E, Soneoka Y, Strickland CD et al (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394

    PubMed  CAS  Google Scholar 

  • Habich A, Jurga M, Markiewicz I, Lukomska B, Bany-Laszewicz U, Domanska-Janik K (2006) Early appearance of stem/progenitor cells with neural-like characteristics in human cord blood mononuclear fraction cultured in vitro. Exp Hematol 34:914–925

    Google Scholar 

  • Hall EJ (ed) (1988) Radiobiology for the radiobiologist, 3rd edn. JB Lippincott Company, Philadelphia

    Google Scholar 

  • Hazen AL, Smith MJ, Desponts C, Winter O, Moser K, Kerr WG (2009) SHIP is required for a functional hematopoietic stem cell niche. Blood 113:2924–2930

    Google Scholar 

  • Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MAS, Werb Z, Rafii S (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of Kit-Ligand. Cell 109:625–637

    Google Scholar 

  • Hirschi KK, Goodell MA (2002) Hematopoietic, vascular, and cardiac fates of bone marrow-derived stem cells. Gene Ther 9:648–652

    Article  PubMed  CAS  Google Scholar 

  • Ibanez IL, Bracalente C, Molinari BL, Palmieri MA, Policastro L, Kreiner AJ, Burlon AA, Valda A, Navalesi D, Davidson J, Davidson M, Vazquez M, Ozafran M, Duran H (2009) Induction and rejoining of DNA double strand breaks assessed by H2AX phosphorylation in melanoma cells irradiated with proton and lithium beams. Int J Radiat Oncol Biol Phys 74:1226–1235

    Google Scholar 

  • Ishikawa F, Yasukawa M, Yoshida S, Nakamura KI, Nagatoshi Y, Kanemaru T, Shimoda K, Shimoda S, Miyamoto T, Okamura J, Shultz LD, Harada M (2004) Human cord blood- and bone marrow-derived CD34+ cells regenerate gastrointestinal epithelial cells. FASEBJ 18:1958–1960

    Google Scholar 

  • Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK, Goodell MA (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107:1395–1402

    Google Scholar 

  • Jahroudi N, Ardekani AM, Greenberger JS (1996) Ionizing irradiation increases transcription of the von Willebrand factor gene in endothelial cells. Blood 88:3801–3814

    PubMed  CAS  Google Scholar 

  • Jiang J, Kurnikov I, Belikova NA, Xiao J, Zhao Q, Vlasova IL, Amoscato AA, Braslau R, Studer A, Fink MP, Greenberger JS, Wipf Pe, Kagan VE (2007) Structural requirements for optimized delivery, inhibition of oxidative stress an anti-apoptotic activity of targeted nitroxides. J Pharmacol Exp Ther 320(5):1050–1060

    Google Scholar 

  • Jones DL, Wagers J (2008) No place like home: anatomy and function of the stem cell niche. Mol Cell Biol 9:11–20

    Google Scholar 

  • Kagan VE, Bayir A, Bayir H, Stoyanovsky D, Borisenko GG, Tyurina YY, Wipf P, Atkinson J, Greenberger JS, Chapkin RS, Belikova NA (2009) Mitochondria-targeted disruptors and inhibitors of cytochrome c/cardiolipin peroxidase complexes: a new strategy in anti-apoptotic drug discovery. Mol Nutr Food Res 53:104–114

    Google Scholar 

  • Kalabis J, Oyama K, Okawa T, Nakagawa H, Michaylira CZ, Stairs DB, Figueiredo J-L, Mahmood U, Diehl JA, Rustgi AK (2008) A subpopulation of mouse esophageal basal cells has properties of stem cells with the capacity for self-renewal and lineage specification. J Clin Invest 118:3860–3868

    PubMed  CAS  Google Scholar 

  • Kaminski A, Pohl CB, Sponholz C, Ma N, Stamm C, Vollmar B, Steinhoff G (2004) Up-regulation of endothelial nitric oxide synthase inhibits pulmonary leukocyte migration following lung ischemia-reperfusion in mice. Am J Pathol 164(6):2241–2249

    Article  PubMed  CAS  Google Scholar 

  • Kamishina H, Cheeseman JA, Clemmons RM (2008) Nestin-positive spheres derived from canine bone marrow stromal cells generate cells with early neuronal and glial phenotypic characteristics. In Vitro Cell Dev Biol Animal 44:140–144

    Google Scholar 

  • Kataoka K, Medina RJ, Kageyama T, Miyazaki M, Yoshino T, Makino T, Huh Nam-ho (2003) Participation of adult mouse bone marrow cells in reconstitution of skin. Am J Pathol 163(4):1227–1231

    Google Scholar 

  • Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121

    Google Scholar 

  • Kim HK, De La Luz Sierra M, Williams CK, Gulino AV, Tosato G (2006) G-CSF down-regulation of CXCR4 expression identified as a mechanism for mobilization of myeloid cells. Blood 108:812–820

    Google Scholar 

  • Korbling M, Katz RL, Khanna A, Ruifrok AC, Rondon G, Albitar M, Champlin RE, Estrov Z (2002) Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N Engl J Med 346:738–746

    Google Scholar 

  • Krause D, Theise N, Collector M et al (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377

    Article  PubMed  CAS  Google Scholar 

  • Kyung UH, Reynolds SD, Watkins S, Fuchs E, Stripp BR (2004) Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium. Am J Pathol 164:577–588

    Google Scholar 

  • Lagasse E, Shizuru JA, Uchida N, Tsukamoto A, Weissman IL (2001) Toward regenerative medicine. Immun 14:425–436

    Google Scholar 

  • Lamba BA, Karl MO, Ware CB, Reh TA (2006) Efficient generation of retinal progenitor cells from human embryonic stem cells. PNAS 103:12769–12774

    Google Scholar 

  • Lanza RP, Atala A (eds) (2002) Methods of tissue engineering. Academic Press, New York

    Google Scholar 

  • Leask A, Abraham DJ (2004) TGF-B signaling and the fibrotic response. FASEB J 18:816–827

    Article  PubMed  CAS  Google Scholar 

  • Lechpammer S, Epperly MW, Zhou S, Nie S, Glowacki J, Greenberger JS (2005) Antioxidant pool regulated adipocyte differentiation Sod2−/− bone marrow stromal cells. Exp Hematol 33:1201–1208

    Google Scholar 

  • Lei Ye, Haider HKA, Sim EKW (2006) Adult stem cells for cardiac repair: a choice between skeletal myoblasts and bone marrow stem cells. Exp Biol Med 231:8–19

    Google Scholar 

  • Li H, Liu H, Heller S (2003) Pluripotent stem cells from the adult mouse inner ear. Nat Med 9(10):1293–1299

    Article  PubMed  CAS  Google Scholar 

  • Li W, Ferguson BJ, Khaled WT, Tevendale M, Stingl J, Poli V, Rich T, Salomoni P, Watson CJ (2009) DML depletion disrupts normal mammary gland development and skews the composition of the mammary luminal cell progenitor pool. PNAS 106:4725–4730

    Google Scholar 

  • Lim DA, Huang Y-C, Swigut T, Mirick AL, Garcia-Verdugo JM, Wysocka J, Ernst P, Alvarez-Bo (2009) Chromatin remodeling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature 458:529–336

    Google Scholar 

  • Lin W, Chen X, Wang X, Liu J, Gu X (2008) Adult rat bone marrow stromal cells differentiate into Schwann cell-like cells in vitro. In Vitro Cell Dev Biol Animal 44:31–40

    Google Scholar 

  • Link CJ, Orren D, Muldoon R, Cook JA, Bohr VA (1996) Pentoxifylline inhibits gene-specific repair of UV-induced DNA damage in hamster cells. Rad Onc Invest 4:115–121

    Google Scholar 

  • Lombaert IMA, Brunsting JF, Wierenga PK, Kampinga HH, de Haan G, Coppes RP (2008) Cytokine treatment improves parenchymal and vascular damage of salivary glands after irradiation. Clin Cancer Res 14(23):7741–7748

    Google Scholar 

  • Lue Y, Erkkila K, Liu PY, Ma K, Wang C, Hikim AS, Swerdloff RS (2007) Fate of bone marrow stem cells transplanted into the testis: potential implication for men with testicular failure. Am J Pathol, 170(3):899–908

    Google Scholar 

  • Matsuzaki Y, Kinjo K, Mulligan RC et al (2004) Unexpectedly efficient homing capacity of purified murine hematopoietic stem cells. Immunity 20:87–93

    Article  PubMed  CAS  Google Scholar 

  • Mauch P, Greenberger JS, Botnick LE, Hannon EC, Hellman S (1980) Evidence for structured variation in self-renewal capacity within long-term bone marrow cultures. PNAS 77:2927–2930

    Article  PubMed  CAS  Google Scholar 

  • McCulloch EA, Till JE (1962) The sensitivity of cells from normal mouse bone marrow to gamma radiation in vitro and in vivo. Radiat Res 16:822–832

    Article  PubMed  CAS  Google Scholar 

  • Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290:1779–1783

    Google Scholar 

  • Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K, Sano S, Okano T, Kitamura S, Mori H (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12(4):459–468

    Google Scholar 

  • Montini E, Cesana D, Schmidt M, Sanvito F, Bartholomae CC, Ranzani M, Benedicenti F, Sergi LS, Ambrosi A, Ponzoni M, Doglioni C, Di SC, von Kalle C, Naldini L (2009) The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 110:964–975

    Google Scholar 

  • Mookerjee I, Hewitson TD, Halls ML, Summers RJ, Mathai ML, Bathgate RAD, Tregear GW, Samuel CS (2009) Relaxin inhibits renal myofibroblast differentiation via RXFP1, the nitric oxide pathway and Smad2. FASEBJ 23:1219–1229

    Google Scholar 

  • Mothersill C, Seymour CB (2004) Radiation-induced bystander effects-implications for cancer. Nat Rev Cancer 4:158–164

    Article  PubMed  CAS  Google Scholar 

  • Munoz JR, Stoutenger BR, Robinson AP, Spees JL, Prockop DJ (2005) Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. PNAS 102:18171–18176

    Google Scholar 

  • Murayama T, Tepper OM, Silver M, Ma H, Losordo DW, Isner JM, Asahara T, Kalka C (2002) Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Exp Hematol 30:967–972

    Google Scholar 

  • Naparstek E, Donnelly T, Kase K, Greenberger JS (1985) Biologic effects of in vitro x-irradiation of murine long-term bone marrow cultures on the production of granulocyte-macrophage colony stimulating factors. Exp Hematol 13:701–708

    PubMed  CAS  Google Scholar 

  • Niu Y, Epperly MW, Shen H, Smith T, Lewis D, Gollin S, Greenberger JS (2008) Intraesophageal MnSOD-plasmid liposome administration enhances engraftment and self-renewal capacity of bone marrow derived progenitors of esophageal squamous epithelium. Gene Therapy 15:347–356

    Google Scholar 

  • Novakova-Jiresova A, van Gameren MM, Coppes RP, Kampinga HH, Groen HJM (2004) Transforming growth factor-B plasma dynamics and post-irradiation lung injury in lung cancer patients. Radiother Oncol 71:183–189

    Article  PubMed  CAS  Google Scholar 

  • Oberley LW, Buettner GR (1979) Role of superoxide dismutase in cancer: a review. Cancer Res 39:1141–1149

    PubMed  CAS  Google Scholar 

  • Ogle BM, Cascalho M, Platt JL (2005) Biological implications of cell fusion. Mol Cell Biol 6:567

    CAS  Google Scholar 

  • Ohtaki H, Ylostalo JH, Foraker JE, Robinson AP, Reger RL, Shioda S, Prockop DJ (2008) Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses. PNAS 105:14638–14643

    Google Scholar 

  • Olive PL, Banath JP (2004) Phosphorylation of histone H2AX as a measure of radiosensitivity. Int J Radiat Oncol Biol Phys 58:331–335

    Article  PubMed  CAS  Google Scholar 

  • Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, Phinney DG (2003) Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. PNAS 100(14):8407–8411

    Google Scholar 

  • Park HC, Shim YS, Ha Y, Yoon SH, Park SR, Choi BH, Park HS (2005) Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Eng 11:913–922

    Google Scholar 

  • Parmar K, Mauch P, Vergilio Jo-A, Sackstein R, Down JD (2007) Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. PNAS 104:5431–5436

    Google Scholar 

  • Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Boggs SS, Greenberger JS, Goff JP (1999) Bone marrow as a potential source of hepatic oval cells. Science 284:1168–1170

    Article  PubMed  CAS  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  • Prise KM, O’Sullivan JM (2009) Radiation-induced bystander signaling in cancer therapy. Nat Rev Cancer 9:351–365

    Google Scholar 

  • Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71

    Article  PubMed  CAS  Google Scholar 

  • Proksch S, Bel A, Puymirat E, Pidial L, Bellamy V, Peyrard S, Larghero J, Augereau-Vacher B, Menasche P (2009) Does the human skeletal muscle harbor the murine equivalents of cardiac precursor cells? Mol Ther 17(4):733–741

    Google Scholar 

  • Quesenberry PJ, Colvin G, Abedi M (2005) Perspective fundamental and clinical concepts on stem cell homing and engraftment: a journey to niches and beyond. Exp Hematol 33:9–19

    Article  PubMed  Google Scholar 

  • Reynolds SD, Giangreco A, Hong KU, McGrath KE, Ortiz LA, Stripp BR (2004) Airway injury in lung disease pathophysiology: selective depletion of airway stem and progenitor cell pools potentiates lung inflammation and alveolar dysfunction. Am J Physiol Lung Cell Mol Physiol 287:L1256–L1265

    Google Scholar 

  • Rice A, Barbot C, Lacombe F, Dubosc-Marchenay N, Marit G, Hau F, Boiron JM, Reiffers J (1993) 5-fluorouracil permits access to a primitive subpopulation of peripheral blood stem cells. Stem Cells 11:326–335

    Article  PubMed  CAS  Google Scholar 

  • Roy V, Verfaillie CM (1999) Expression and function of cell adhesion molecules on fetal liver, cord blood and bone marrow hematopoietic progenitors: implications for anatomical localization and developmental stage specific regulation of hematopoiesis. Exp Hematol 27:302–312

    Article  PubMed  CAS  Google Scholar 

  • Rubin P, Cassarett GW (1968) Clinical radiation pathology, vol 1. WB Saunders, Philadelphia

    Google Scholar 

  • Sakai E, Kitajima K, Sato A, Nakano T (2009) Increase of hematopoietic progenitor and suppression of endothelial gene expression by Runx1 expression during in vitro ES differentiation. Exp Hematol 37:334–345

    Google Scholar 

  • Sakakeeny MA, Greenberger JS (1982) Granulopoiesis longevity in continuous bone marrow cultures and factor dependent cell line generation: significant variation among 28 inbred mouse strains and outbred stocks. J Nat Cancer Inst 68:305–317

    PubMed  CAS  Google Scholar 

  • Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water Jeroen AJM, Mohapatra G, Figueiredo JL, Martuza RL, Weissleder R, Shah K (2009) Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci U S A 106(12):4822–4827

    Google Scholar 

  • Schmitz N, Linch DC, Dreger P et al (1996) Randomized trial of filgrastim-mobilized peripheral blood progenitor cell transplantation versus autologous bone-marrow transplantation in lymphoma patients. Lancet 347:353–357

    Article  PubMed  CAS  Google Scholar 

  • Semerad CL, Christopher MJ, Liu F et al (2005) G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 106:3020–3027

    Article  PubMed  CAS  Google Scholar 

  • Shimonaka M, Katagiri K, Nakayama T, Fujita N, Tsuruo T, Yoshie O, Kinashi T (2003) Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow. J Cell Biol 161(2):417–427

    Article  PubMed  CAS  Google Scholar 

  • Sigurjonsson OE, Perreault MC, Egeland T, Glover JC (2005) Adult human hematopoietic stem cells produce neurons efficiently in the regenerating chicken embryo spinal cord. PNAS 102:5227–5232

    Google Scholar 

  • Simard AR, Rivest S (2004) Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB J 18:998–1000

    Google Scholar 

  • Spyridonidis A, Schmitt-Graff A, Tomann T, Dwenger A, Follo M, Behringer D, Finke J (2004) Epithelial tissue chimerism after human hematopoietic cell transplantation is a real phenomenon. Am J Pathol 164:1147–1155

    Article  PubMed  Google Scholar 

  • Stripp BR, Reynolds SD (2005) Bioengineered lung epithelium: implications for basic and applied studies in lung tissue regeneration. Am J Respir Cell Mol Biol 32:85–86

    Google Scholar 

  • Switzer GE, Goycoolea JM, Dew MA, Graeff EC, Hegland J (2001) Donating stimulated peripheral blood stem cells vs. bone marrow: do donors experience the procedures differently? Bone Marrow Transplant 27:917–923

    Article  PubMed  CAS  Google Scholar 

  • Takakura N, Watanabe T, Suenobu S, Yamada Y, Noda T, Ito Y, Satake M, Suda T (2000) A role for hematopoietic stem cells in promoting angiogenesis. Cell 102:199–209

    Google Scholar 

  • Terskikh AV, Miyamoto T, Chang C, Diatchenko L, Weissman IL (2003) Gene expression analysis of purified hematopoietic stem cells and committed progenitors. Blood 102:94–102

    Google Scholar 

  • Theise ND, Badve S, Saxena R, Henegariu O, Sell S, Crawford JM, Krause DS (2000) Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology 31:235–240

    Article  PubMed  CAS  Google Scholar 

  • Till JE, McCulloch EA (1961) Developmental aspects of the cell cycle, vol 971. Academic Press, New York, pp 297–313

    Google Scholar 

  • Tjwa M, Sidenius N, Moura R, Jansen S, Theunissen K, Andolfo A, DeMol M, Dewerchin M, Moons L, Blasi F, Verfailie C, Carmeliet P (2009) Membrane-anchored uPAR regulates the proliferation, marrow pool size, engraftment, and mobilization of mouse hematopoietic stem/progenitor cells. J Clin Invest 119(4):1008–1018

    Google Scholar 

  • Torres P, Maria E, Parfitt David E, Kouzarides T, Zernicka-Goetz M (2007) Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature 445:214–220

    Google Scholar 

  • Tsao GJ, Allen JA, Logronio KA, Lazzeroni LC, Shizuru JA (2009) Purified hematopoietic stem cell allografts reconstitute immunity superior to bone marrow. PNAS 106:3288–3293

    Google Scholar 

  • Tyurin VA, Tyurina YY, Kochanek PM, Hamilton R, DeKosky ST, Greenberger JS, Bayir H, Kagan VE (2008) Oxidative lipidomics of programmed cell death. Methods Enzymol 442:375–393

    Google Scholar 

  • Tyurina YY, Tyurin VA, Epperly MW, Greenberger JS, Kagan VE (2008) Oxidative lipidomics of γ-irradiation induced intestinal injury. Free Radic Biol Med 44:299–314

    Google Scholar 

  • Unwin RD, Smith DL, Blinco D, Wilson CL, Miller CJ, Evans CA, Jaworska E, Baldwin SA, Barnes K, Pierce Andrew, Spooncer Elaine, Whetton Anthony D (2006) Quantitative proteomics reveals posttranslational control as a regulatory factor in primary hematopoietic stem cells. Blood 107:4687–4693

    Google Scholar 

  • van der Kogel AJ, Sissingh HA, Zoetelief J (1982) Effect of x-rays and neutrons on repair and regeneration in the rat spinal cord. Int J Radiat Oncol Biol Phys 8:2095–2097

    Article  PubMed  Google Scholar 

  • van Hennik PB, de Koning AE, Ploemacher RE (1999) Seeding efficiency of primitive human hematopoietic cells in nonobese diabetic/severe combined immune deficiency mice: implications for stem cell frequency assessment. Blood 94(9):3055–3061

    Google Scholar 

  • van Rongen E, Thames HD, Travis EL (1993) Recovery from radiation damage in mouse lung: Interpretations in terms of two rates of repair. Radiat Res 133:225–233

    Article  PubMed  Google Scholar 

  • Wagers AJ, Christensen JL, Weissman IL (2002) Cell fate determination from stem cells. Gene Ther 9:606–612

    Article  PubMed  CAS  Google Scholar 

  • Werts ED, Gibson DP, Knapp SA et al (1980) Bone marrow fibroblasts circulate to replace damaged marrow sites. Radiat Res 81:20–30

    Article  PubMed  CAS  Google Scholar 

  • Woodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz TA, Rosen JM (2007) WNT/β-catenin mediates radiation resistance of mouse mammary progenitor cells. PNAS 104:618–623

    Google Scholar 

  • Wright DE, Wagers AJ, Gulati AP, Johnson FL, Weissman IL (2001) Physiological migration of hematopoietic stem and progenitor cells. Science 294:1933–1936

    Article  PubMed  CAS  Google Scholar 

  • Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B, Thyssen S, Gray DA, Bhatia M (2003) Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 21:763–770

    Google Scholar 

  • Yoon Y, Wecker A, Heyd L, Park J, Tkebuchava T, Kusano K, Hanley A, Scadova H, Qin G, Cha D, Johnson KL, Aikawa R, Asahara T, Losordo DW (2005) Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest 115:326–338

    Google Scholar 

  • Young PP, Vaughan DE, Hatzopoulos AK (2007) Biologic properties of endothelial progenitor cells and their potential for cell therapy. Prog Cardiovasc Dis 49:421–429

    Article  PubMed  CAS  Google Scholar 

  • Yoyooka Y, Tsunekawa N, Akasu R, Noce T (2003) Embryonic stem cells can form germ cells in vitro. PNAS 100:11457–11462

    Article  Google Scholar 

  • Zaibak F, Kozlovski J, Vadolas J, Sarsero JP, Williamson R, Howden SE (2009) Integration of functional bacterial artificial chromosomes into human cord blood-derived multipotent stem cells. Gene Ther 16:404–414

    Article  PubMed  CAS  Google Scholar 

  • Zeng F, Chen M, Baldwin DA, Gong Z, Yan J, Qian H, Wang J, Jiang X, Ren Z, Sun Deming, Huang S (2006) Multiorgan engraftment and differentiation of human cord blood CD34+ Lin- cells in goats assessed by gene expression profiling. PNAS 103:7801–7806

    Google Scholar 

  • Zhang J, Niu C, Ye L et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Yates KE, Eid K, Glowacki J (2005) Demineralized bone promotes chondrocyte or osteoblast differentiation of human marrow stromal cells cultured in collagen sponges. Cell Tissue Banking 6:33–44

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Greenberger JS, Epperly MW, Goff JP, Adler C, LeBoff MS, Glowacki J (2008) Age-related intrinsic changes in human bone marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 7:335–343

    Google Scholar 

  • Zipori D (2004) The nature of stem cells: state rather than entity. Nat Rev 5:873–883

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel S. Greenberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Greenberger, J.S., Epperly, M.W. (2014). Bioengineering of Irradiated Normal Tissues by Bone Marrow Stem Cells. In: Rubin, P., Constine, L., Marks, L. (eds) ALERT - Adverse Late Effects of Cancer Treatment. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72314-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72314-1_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72313-4

  • Online ISBN: 978-3-540-72314-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics