Skip to main content

Relapsed and Refractory Acute Myeloid Leukemia

  • Chapter
Acute Leukemias

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

Abstract

Despite effective initial therapy, the majority of adults with acute myeloid leukemia (AML) who achieve a complete remission (CR) eventually relapse and usually within 2 years. Furthermore, approximately 20% of patients never achieve first complete remission (CR1). In these settings, alternative treatment strategies have limited efficacy and allogeneic hematopoietic stem cell transplantation (HSCT), with generation of the potent immunologic reaction graft-vs.-leukemia (GVL) effect, is considered the best curative strategy. However, many patients do not have a suitable donor or are not candidates for transplantation. Therefore, the treatment of patients who relapse or are refractory to conventional initial therapy is challenging. The definition of refractory AML includes patients who fail conventional induction chemotherapy, those with a short (less than 6–12 months) CR1 duration, and patients who have relapsed twice or more [1]. This definition has been useful in defining relatively uniform populations of patients for clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hiddemann W, Martin WR, Sauerland CM, et al. (1990) Definition of refractoriness against conventional chemotherapy in acute myeloid leukemia: A proposal based on the results of retreatment by thioguanine, cytosine arabinoside, and daunorubicin (TAD 9) in 150 patients with relapse after standardized first line therapy. Leukemia 4(3):184–188

    PubMed  CAS  Google Scholar 

  2. Slovak ML, Kopecky KJ, Cassileth PA, et al. (2000) Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: A Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 96(13):4075–4083

    PubMed  CAS  Google Scholar 

  3. Buchner T, Hiddemann W, Berdel WE, et al. (2003) 6-Thioguanine, cytarabine, and daunorubicin (TAD) and high-dose cytarabine and mitoxantrone (HAM) for induction, TAD for consolidation, and either prolonged maintenance by reduced monthly TAD or TAD-HAM-TAD and one course of intensive consolidation by sequential HAM in adult patients at all ages with de novo acute myeloid leukemia (AML): A randomized trial of the German AML Cooperative Group. J Clin Oncol 21(24):4496–4504

    Article  PubMed  CAS  Google Scholar 

  4. Moore JO, George SL, Dodge RK, et al. (2005) Sequential multiagent chemotherapy is not superior to high-dose cytarabine alone as postremission intensification therapy for acute myeloid leukemia in adults under 60 years of age: Cancer and Leukemia Group B Study 9222. Blood 105(9):3420–3427

    Article  PubMed  CAS  Google Scholar 

  5. Rowe JM, Neuberg D, Friedenberg W, et al. (2004) A phase 3 study of three induction regimens and of priming with GM-CSF in older adults with acute myeloid leukemia: A trial by the Eastern Cooperative Oncology Group. Blood 103(2):479–485

    Article  PubMed  CAS  Google Scholar 

  6. Goldstone AH, Burnett AK, Wheatley K, et al. (2001) Attempts to improve treatment outcomes in acute myeloid leukemia (AML) in older patients: The results of the United Kingdom Medical Research Council AML11 trial. Blood 98(5):1302–1311

    Article  PubMed  CAS  Google Scholar 

  7. Lee S, Tallman MS, Oken MM, et al. (2000) Duration of second complete remission compared with first complete remission in patients with acute myeloid leukemia. Eastern Cooperative Oncology Group. Leukemia 14(8):1345–1348

    Article  PubMed  CAS  Google Scholar 

  8. Estey EH (2000) Treatment of relapsed and refractory acute myelogenous leukemia. Leukemia 14(3):476–479

    Article  PubMed  CAS  Google Scholar 

  9. Keating MJ, Kantarjian H, Smith TL, et al. (1989) Response to salvage therapy and survival after relapse in acute myelogenous leukemia. J Clin Oncol 7(8):1071–1080

    PubMed  CAS  Google Scholar 

  10. Breems DA, Van Putten WL, Huijgens PC, et al. (2005) Prognostic index for adult patients with acute myeloid leukemia in first relapse. J Clin Oncol 23(9):1969–1978

    Article  PubMed  Google Scholar 

  11. Giles F, Verstovsek S, Garcia-Manero G, et al. (2006) Validation of the European Prognostic Index for younger adult patients with acute myeloid leukaemia in first relapse. Br J Haematol 134(1):58–60

    Article  PubMed  Google Scholar 

  12. Lo Coco F, Diverio D, Avvisati G, et al. (1999) Therapy of molecular relapse in acute promyelocytic leukemia. Blood 94(7):2225–2229

    PubMed  Google Scholar 

  13. Marcucci G, Mrozek K, Ruppert AS, et al. (2004) Abnormal cytogenetics at date of morphologic complete remission predicts short overall and disease-free survival, and higher relapse rate in adult acute myeloid leukemia: Results from cancer and leukemia group B study 8461. J Clin Oncol 22(12):2410–2418

    Article  PubMed  Google Scholar 

  14. Sternberg DW, Aird W, Neuberg D, et al. (2000) Treatment of patients with recurrent and primary refractory acute myelogenous leukemia using mitoxantrone and intermediate-dose cytarabine: A pharmacologically based regimen. Cancer 88(9):2037–2041

    Article  PubMed  CAS  Google Scholar 

  15. Kern W, Aul C, Maschmeyer G, et al. (1998) Superiority of highdose over intermediate-dose cytosine arabinoside in the treatment of patients with high-risk acute myeloid leukemia: Results of an age-adjusted prospective randomized comparison. Leukemia 12(7):1049–1055

    Article  PubMed  CAS  Google Scholar 

  16. Rees JK, Gray RG, Swirsky D, et al. (1986) Principal results of the Medical Research Council’s 8th acute myeloid leukaemia trial. Lancet 2(8518):1236–1241

    Article  PubMed  CAS  Google Scholar 

  17. Appelbaum FR, Rowe JM, Radich J, et al. (2001) Acute myeloid leukemia hematology. Am Soc Hematol Educ Program, pp 62–86

    Google Scholar 

  18. Burnett AK, Mohite U (2006) Treatment of older patients with acute myeloid leukemia—New agents. Semin Hematol 43(2): 96–106

    Article  PubMed  CAS  Google Scholar 

  19. Estey E, Plunkett W, Gandhi V, et al. (1993) Fludarabine and arabinosylcytosine therapy of refractory and relapsed acute myelogenous leukemia. Leuk Lymphoma 9(4–5):343–350

    Article  PubMed  CAS  Google Scholar 

  20. Thalhammer F, Geissler K, Jager U, et al. (1996) Duration of second complete remission in patients with acute myeloid leukemia treated with chemotherapy: A retrospective single-center study. Ann Hematol 72(4):216–222

    Article  PubMed  CAS  Google Scholar 

  21. Estey E (1996) Treatment of refractory AML. Leukemia 10(6):932–936

    PubMed  CAS  Google Scholar 

  22. Appelbaum FR, Gundacker H, Head DR, et al. (2006) Age and acute myeloid leukemia. Blood 107(9):3481–3485

    Article  PubMed  CAS  Google Scholar 

  23. Kantarjian HM, Keating MJ, Walters RS, et al. (1988) The characteristics and outcome of patients with late relapse acute myelogenous leukemia. J Clin Oncol 6(2):232–238

    PubMed  CAS  Google Scholar 

  24. Wheatley K, Burnett AK, Goldstone AH, et al. (1999) A simple, robust, validated and highly predictive index for the determination of risk-directed therapy in acute myeloid leukaemia derived from the MRC AML 10 trial. United Kingdom Medical Research Council’s Adult and Childhood Leukaemia Working Parties. Br J Haematol 107(1):69–79

    Article  PubMed  CAS  Google Scholar 

  25. Kern W, Haferlach T, Schoch C, et al. (2003) Early blast clearance by remission induction therapy is a major independent prognostic factor for both achievement of complete remission and long-term outcome in acute myeloid leukemia: Data from the German AML Cooperative Group (AMLCG) 1992 Trial. Blood 101(1):64–70

    Article  PubMed  CAS  Google Scholar 

  26. Weltermann A, Fonatsch C, Haas OA, et al. (2004) Impact of cytogenetics on the prognosis of adults with de novo AML in first relapse. Leukemia 18(2):293–302

    Article  PubMed  CAS  Google Scholar 

  27. Kern W, Haferlach T, Schnittger S, et al. (2002) Karyotype instability between diagnosis and relapse in 117 patients with acute myeloid leukemia: Implications for resistance against therapy. Leukemia 16(10):2084–2091

    Article  PubMed  CAS  Google Scholar 

  28. Estey E, Keating MJ, Pierce S, et al. (1995) Change in karyotype between diagnosis and first relapse in acute myelogenous leukemia. Leukemia 9(6):972–976

    PubMed  CAS  Google Scholar 

  29. Anderlini P, Luna M, Kantarjian HM, et al. (1996) Causes of initial remission induction failure in patients with acute myeloid leukemia and myelodysplastic syndromes. Leukemia 10(4):600–608

    PubMed  CAS  Google Scholar 

  30. Glasmacher A, Prentice A, Gorschluter M, et al. (2003) Itraconazole prevents invasive fungal infections in neutropenic patients treated for hematologic malignancies: Evidence from a meta-analysis of 3597 patients. J Clin Oncol 21(24):4615–4626

    Article  PubMed  CAS  Google Scholar 

  31. Mengis C, Aebi S, Tobler A, et al. (2003) Assessment of differences in patient populations selected for excluded from participation in clinical phase III acute myelogenous leukemia trials. J Clin Oncol 21(21):3933–3939

    Article  PubMed  Google Scholar 

  32. van Prooijen HC, Dekker AW, Punt K (1984) The use of intermediate dose cytosine arabinoside (ID Ara-C) in the treatment of acute non-lymphocytic leukaemia in relapse. Br J Haematol 57(2):291–299

    PubMed  Google Scholar 

  33. Herzig RH, Lazarus HM, Wolff SN, et al. (1985) High-dose cytosine arabinoside therapy with and without anthracycline antibiotics for remission reinduction of acute nonlymphoblastic leukemia. J Clin Oncol 3(7):992–997

    PubMed  CAS  Google Scholar 

  34. Capizzi RL, Powell BL (1987) Sequential high-dose ara-C and asparaginase versus high-dose ara-C alone in the treatment of patients with relapsed and refractory acute leukemias. Semin Oncol 14(2 Suppl 1):40–50

    PubMed  CAS  Google Scholar 

  35. Capizzi RL, Davis R, Powell B, et al. (1988) Synergy between high-dose cytarabine and asparaginase in the treatment of adults with refractory and relapsed acute myelogenous leukemia—A Cancer and Leukemia Group B Study. J Clin Oncol 6(3):499–508

    PubMed  CAS  Google Scholar 

  36. Carella AM, Carlier P, Pungolino E, et al. (1993) Idarubicin in combination with intermediate-dose cytarabine and VP-16 in the treatment of refractory or rapidly relapsed patients with acute myeloid leukemia. The GIMEMA Cooperative Group. Leukemia 7(2):196–199

    PubMed  CAS  Google Scholar 

  37. Karanes C, Kopecky KJ, Head DR, et al. (1999) A phase III comparison of high dose ARA-C (HIDAC) versus HIDAC plus mitoxantrone in the treatment of first relapsed or refractory acute myeloid leukemia Southwest Oncology Group Study. Leuk Res 23(9):787–794

    Article  PubMed  CAS  Google Scholar 

  38. Tavernier E, Le QH, Elhamri M, et al. (2003) Salvage therapy in refractory acute myeloid leukemia: Prediction of outcome based on analysis of prognostic factors. Leuk Res 27(3):205–214

    Article  PubMed  CAS  Google Scholar 

  39. Vogler WR, McCarley DL, Stagg M, et al. (1994) A phase III trial of high-dose cytosine arabinoside with or without etoposide in relapsed and refractory acute myelogenous leukemia. A Southeastern Cancer Study Group trial. Leukemia 8(11):1847–1853

    PubMed  CAS  Google Scholar 

  40. Daenen S, Lowenberg B, Sonneveld P, et al. (1994) Efficacy of etoposide and mitoxantrone in patients with acute myelogenous leukemia refractory to standard induction therapy and intermediatedose cytarabine with amsidine. Dutch Hematology-Oncology Working Group for Adults (HOVON). Leukemia 8(1):6–10

    PubMed  CAS  Google Scholar 

  41. Gandhi V, Estey E, Keating MJ, et al. (1996) Chlorodeoxyadenosine and arabinosylcytosine in patients with acute myelogenous leukemia: Pharmacokinetic, pharmacodynamic, and molecular interactions. Blood 87(1):256–264

    PubMed  CAS  Google Scholar 

  42. Kornblau SM, Gandhi V, Andreeff HM, et al. (1996) Clinical and laboratory studies of 2-chlorodeoxyadenosine +/− cytosine arabinoside for relapsed or refractory acute myelogenous leukemia in adults. Leukemia 10(10):1563–1569

    PubMed  CAS  Google Scholar 

  43. Lee EJ, George SL, Amrein PC, et al. (1998) An evaluation of combinations of diaziquone, etoposide and mitoxantrone in the treatment of adults with relapsed or refractory acute myeloid leukemia: Results of 8722, a randomized phase II study conducted by Cancer and Leukemia Group B. Leukemia 12(2): 139–143

    Article  PubMed  CAS  Google Scholar 

  44. Robak T, Wrzesien-Kus A, Lech-Maranda E, et al. (2000) Combination regimen of cladribine (2-chlorodeoxyadenosine), cytarabine and G-CSF (CLAG) as induction therapy for patients with relapsed or refractory acute myeloid leukemia. Leuk Lymphoma 39(1–2):121–129

    PubMed  CAS  Google Scholar 

  45. List AF, Kopecky KJ, Willman CL, et al. (2001) Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: A Southwest Oncology Group study. Blood 98(12):3212–3220

    Article  PubMed  CAS  Google Scholar 

  46. Yin J, Wheatley K, Rees JK, et al. (2001) Comparison of “sequential” versus “standard” chemotherapy as re-induction treatment, with or without cyclosporine, in refractory/relapsed acute myeloid leukaemia (AML): Results of the UK Medical Research Council AML-R trial. Br J Haematol 122:164–165

    Google Scholar 

  47. Advani R, Saba HI, Tallman MS, et al. (1999) Treatment of refractory and relapsed acute myelogenous leukemia with combination chemotherapy plus the multidrug resistance modulator PSC 833 (Valspodar). Blood 93(3):787–795

    PubMed  CAS  Google Scholar 

  48. Greenberg PL, Lee SJ, Advani R, et al. (2004) Mitoxantrone, etoposide, and cytarabine with or without valspodar in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome: A phase III trial (E2995). J Clin Oncol 22(6):1078–1086

    Article  PubMed  CAS  Google Scholar 

  49. Dantzig AH, Shepard RL, Cao J, et al. (1996) Reversal of P-glycoprotein-mediated multidrug resistance by a potent cyclopropyldi-benzosuberane modulator, LY335979. Cancer Res 56(18): 4171–4179

    PubMed  CAS  Google Scholar 

  50. Tsimberidou A, Cortes J, Thomas D, et al. (2003) Gemtuzumab ozogamicin, fludarabine, cytarabine and cyclosporine combination regimen in patients with CD33+ primary resistant or relapsed acute myeloid leukemia. Leuk Res 27(10):893–897

    Article  PubMed  CAS  Google Scholar 

  51. Apostolidou E, Cortes J, Tsimberidou A, et al. (2003) Pilot study of gemtuzumab ozogamicin, liposomal daunorubicin, cytarabine and cyclosporine regimen in patients with refractory acute myelogenous leukemia. Leuk Res 27(10):887–891

    Article  PubMed  CAS  Google Scholar 

  52. Gale RP, Horowitz MM, Rees JK, et al. (1996) Chemotherapy versus transplants for acute myelogenous leukemia in second remission. Leukemia 10(1):13–19

    PubMed  CAS  Google Scholar 

  53. Clift RA, Buckner CD, Appelbaum FR, et al. (1992) Allogeneic marrow transplantation during untreated first relapse of acute myeloid leukemia. J Clin Oncol 10(11):1723–1729

    PubMed  CAS  Google Scholar 

  54. Appelbaum FR, Clift RA, Buckner CD, et al. (1983) Allogeneic marrow transplantation for acute nonlymphoblastic leukemia after first relapse. Blood 61(5):949–953

    PubMed  CAS  Google Scholar 

  55. Reiffers J (2000) In: Atkinson K (ed) Clinical bone marrow and blood stem cell transplantation. Cambridge University Press, Cambridge, pp 433–445

    Google Scholar 

  56. Byrne JL, Dasgupta E, Pallis M, et al. (1999) Early allogeneic transplantation for refractory or relapsed acute leukaemia following remission induction with FLAG. Leukemia 13(5):786–791

    Article  PubMed  CAS  Google Scholar 

  57. Matthews DC, Appelbaum FR, Eary JF, et al. (1995) Development of amarrow transplant regimen for acute leukemia using targeted hematopoietic irradiation delivered by 131I-labeled anti-CD45 antibody, combined with cyclophosphamide and total body irradiation. Blood 85(4):1122–1131

    PubMed  CAS  Google Scholar 

  58. Matthews D, Appelbaum FR, Eary JF, et al. (1999) Phase I Study of (131) I-anti-CD45 antibody plus cyclophosphamide and total body irradiation for advanced acute leukemia and myelodysplastic syndrome. Blood 94:1237–1247

    PubMed  CAS  Google Scholar 

  59. Choi SJ, Lee JH, Lee JH, et al. (2004) Treatment of relapsed acute myeloid leukemia after allogeneic bone marrow transplantation with chemotherapy followed by G-CSF-primed donor leukocyte infusion: A high incidence of isolated extramedullary relapse. Leukemia 18(11):1789–1797

    Article  PubMed  CAS  Google Scholar 

  60. Seo S, Kami M, Honda H, et al. (2000) Extramedullary relapse in the so-called “sanctuary” sites for chemotherapy after donor lymphocyte infusion. Bone Marrow Transplant 25(2):226–227

    Article  PubMed  CAS  Google Scholar 

  61. Porter DL (2003) Donor leukocyte infusions in acute myelogenous leukemia. Leukemia 17(6):1035–1037

    Article  PubMed  CAS  Google Scholar 

  62. Bosi A, Bacci S, Miniero R, et al. (1997) Second allogeneic bone marrow transplantation in acute leukemia: A multicenter study from the Gruppo Italiano Trapianto Di Midollo Osseo (GITMO). Leukemia 11(3):420–424

    Article  PubMed  CAS  Google Scholar 

  63. Eapen M, Giralt SA, Horowitz MM, et al. (2004) Second transplant for acute and chronic leukemia relapsing after first HLA-identical sibling transplant. Bone Marrow Transplant 34(8):721–727

    Article  PubMed  CAS  Google Scholar 

  64. Barker JN, Weisdorf DJ, DeFor TE, et al. (2003) Rapid and complete donor chimerism in adult recipients of unrelated donor umbilical cord blood transplantation after reduced-intensity conditioning. Blood 102(5):1915–1919

    Article  PubMed  CAS  Google Scholar 

  65. Rocha V, Labopin M, Sanz G, et al. (2004) Transplants of umbilicalcord blood or bone marrow from unrelated donors in adults with acute leukemia. N Engl J Med 351(22):2276–2285

    Article  PubMed  CAS  Google Scholar 

  66. Majhail NS, Brunstein CG, Wagner JE (2006) Double umbilical cord blood transplantation. Curr Opin Immunol 18(5):571–575

    Article  PubMed  CAS  Google Scholar 

  67. Sierra J, Storer B, Hansen JA, et al. (1997) Transplantation of marrow cells from unrelated donors for treatment of high-risk acute leukemia: The effect of leukemic burden, donor HLA-matching, and marrow cell dose. Blood 89(11):4226–4235

    PubMed  CAS  Google Scholar 

  68. Forman SJ, Schmidt GM, Nademanee AP, et al. (1991) Allogeneic bone marrow transplantation as therapy for primary induction failure for patients with acute leukemia. J Clin Oncol 9(9):1570–1574

    PubMed  CAS  Google Scholar 

  69. Biggs JC, Horowitz MM, Gale RP, et al. (1992) Bone marrow transplants may cure patients with acute leukemia never achieving remission with chemotherapy. Blood 80(4):1090–1093

    PubMed  CAS  Google Scholar 

  70. Cook G, Clark RE, Crawley C, et al. (2006) The outcome of sibling and unrelated donor allogeneic stem cell transplantation in adult patients with acute myeloid leukemia in first remission who were initially refractory to first induction chemotherapy. Biol Blood Marrow Transplant 12(3):293–300

    Article  PubMed  Google Scholar 

  71. Henslee-Downey PJ, Abhyankar SH, Parrish RS, et al. (1997) Use of partially mismatched related donors extends access to allogeneic marrow transplant. Blood 89(10):3864–3872

    PubMed  CAS  Google Scholar 

  72. Singhal S, Powles R, Henslee-Downey PJ, et al. (2002) Allogeneic transplantation from HLA-matched sibling or partially HLA-mismatched related donors for primary refractory acute leukemia. Bone Marrow Transplant 29(4):291–295

    Article  PubMed  CAS  Google Scholar 

  73. Aversa F, Terenzi A, Felicini R, et al. (2002) Haploidentical stem cell transplantation for acute leukemia. Int J Hematol 76(Suppl 1): 165–168

    PubMed  Google Scholar 

  74. Singhal S, Henslee-Downey PJ, Powles R, et al. (2003) Haploidentical vs autologous hematopoietic stem cell transplantation in patients with acute leukemia beyond first remission. Bone Marrow Transplant 31(10):889–895

    Article  PubMed  CAS  Google Scholar 

  75. Spitzer TR (2005) Haploidentical stem cell transplantation: The always present but overlooked donor. Hematology (Am Soc Hematol Educ Program), pp 390–395

    Google Scholar 

  76. Gorin NC, Labopin M, Boiron JM, et al. (2006) Results of genoidentical hemopoietic stem cell transplantation with reduced intensity conditioning for acute myelocytic leukemia: Higher doses of stem cells infused benefit patients receiving transplants in second remission or beyond — The Acute Leukemia Working Party of the European Cooperative Group for Blood and Marrow Transplantation. J Clin Oncol 24(24):3959–3966

    Article  PubMed  Google Scholar 

  77. de Lima M, Anagnostopoulos A, Munsell M, et al. (2004) Nonablative versus reduced-intensity conditioning regimens in the treatment of acute myeloid leukemia and high-risk myelodysplastic syndrome: Dose is relevant for long-term disease control after allogeneic hematopoietic stem cell transplantation. Blood 104(3): 865–872

    Article  PubMed  CAS  Google Scholar 

  78. Sayer HG, Kroger M, Beyer J, et al. (2003) Reduced intensity conditioning for allogeneic hematopoietic stem cell transplantation in patients with acute myeloid leukemia: Disease status by marrow blasts is the strongest prognostic factor. Bone Marrow Transplant 31(12):1089–1095

    Article  PubMed  CAS  Google Scholar 

  79. Dey BR, McAfee S, Colby C, et al. (2003) Impact of prophylactic donor leukocyte infusions on mixed chimerism, graft-versus-host disease, and antitumor response in patients with advanced hematologic malignancies treated with nonmyeloablative conditioning and allogeneic bone marrow transplantation. Biol Blood Marrow Transplant 9(5):320–329

    Article  PubMed  Google Scholar 

  80. Hegenbart U, Niederwieser D, Sandmaier BM, et al. (2006) Treatment for acute myelogenous leukemia by low-dose, total-body, irradiation-based conditioning and hematopoietic cell transplantation from related and unrelated donors. J Clin Oncol 24(3):444–453

    Article  PubMed  CAS  Google Scholar 

  81. Ermann J, Hoffmann P, Edinger M, et al. (2005) Only the CD62L+ subpopulation of CD4+CD25+ regulatory T cells protects from lethal acute GVHD. Blood 105(5):2220–2226

    Article  PubMed  CAS  Google Scholar 

  82. Spitzer TR, McAfee SL, Dey BR, et al. (2003) Nonmyeloablative haploidentical stem-cell transplantation using anti-CD2 monoclonal antibody (MEDI-507)-based conditioning for refractory hematologic malignancies. Transplantation 75(10):1748–1751

    Article  PubMed  CAS  Google Scholar 

  83. Ogawa H, Ikegame K, Kawakami M, et al. (2004) Powerful graftversus-leukemia effects exerted by HLA-haploidentical grafts engrafted with a reduced-intensity regimen for relapse following myeloablative HLA-matched transplantation. Transplantation 78(3):488–489

    Article  PubMed  Google Scholar 

  84. Gorin NC, Labopin M, Meloni G, et al. (1991) Autologous bone marrow transplantation for acute myeloblastic leukemia in Europe: Further evidence of the role of marrow purging by mafosfamide. European Co-operative Group for Bone Marrow Transplantation (EBMT). Leukemia 5(10):896–904

    PubMed  CAS  Google Scholar 

  85. Gorin NC, Labopin M, Fouillard L, et al. (1996) Retrospective evaluation of autologous bone marrow transplantation vs allogeneic bone marrow transplantation from an HLA identical related donor in acute myelocytic leukemia. A study of the European Cooperative Group for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant 18(1):111–117

    PubMed  CAS  Google Scholar 

  86. Burnett AK, Hills R, Goldstone AH, et al. (2004) The impact of transplant in AML in 2nd CR: A prospective study of 741 in the MRC AML 10 and 12 trials. Blood 104:179a (abstr)

    Google Scholar 

  87. Ringden O, Labopin M, Gorin NC, et al. (2000) The dismal outcome in patients with acute leukaemia who relapse after an autograft is improved if a second autograft or a matched allograft is performed. Acute Leukaemia Working Party of the European Group for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant 25(10):1053–1058

    Article  PubMed  CAS  Google Scholar 

  88. Lazarus HM, Perez WS, Klein JP, et al. (2006) Autotransplantation versus HLA-matched unrelated donor transplantation for acute myeloid leukaemia: A retrospective analysis from the Center for International Blood and Marrow Transplant Research. Br J Haematol 132(6):755–769

    Article  PubMed  Google Scholar 

  89. Kantarjian H, Gandhi V, Cortes J, et al. (2003) Phase 2 clinical and pharmacologic study of clofarabine in patients with refractory or relapsed acute leukemia. Blood 102(7):2379–2386

    Article  PubMed  CAS  Google Scholar 

  90. Faderl S, Verstovsek S, Cortes J, et al. (2006) Clofarabine and cytarabine combination as induction therapy for acute myeloid leukemia (AML) in patients 50 years of age or older. Blood 108(1):45–51

    Article  PubMed  CAS  Google Scholar 

  91. Giles FJ, Garcia-Manero G, Cortes JE, et al. (2002) Phase II study of troxacitabine, a novel dioxolane nucleoside analog, in patients with refractory leukemia. J Clin Oncol 20(3):656–664

    Article  PubMed  CAS  Google Scholar 

  92. Giles FJ, Faderl S, Thomas DA, et al. (2003) Randomized phase I/II study of troxacitabine combined with cytarabine, idarubicin, or topotecan in patients with refractory myeloid leukemias. J Clin Oncol 21(6):1050–1056

    Article  PubMed  CAS  Google Scholar 

  93. Sievers EL, Appelbaum FR, Spielberger RT, et al. (1999) Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: A phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood 93(11):3678–3684

    PubMed  CAS  Google Scholar 

  94. van Der Velden VH, te Marvelde JG, Hoogeveen PG, et al. (2001) Targeting of the CD33-calicheamicin immunoconjugate Mylotarg (CMA-676) in acute myeloid leukemia: In vivo and in vitro saturation and internalization by leukemic and normal myeloid cells. Blood 97(10):3197–3204

    Article  Google Scholar 

  95. Sievers EL, Larson RA, Stadtmauer EA, et al. (2001) Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol 19(13):3244–3254

    PubMed  CAS  Google Scholar 

  96. Bross PF, Beitz J, Chen G, et al. (2001) Approval summary: Gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 7(6):1490–1496

    PubMed  CAS  Google Scholar 

  97. Larson RA, Sievers EL, Stadtmauer EA, et al. (2005) Final report of the efficacy and safety of gemtuzumab ozogamicin (Mylotarg) in patients with CD33-positive acute myeloid leukemia in first recurrence. Cancer 104(7):1442–1452

    Article  PubMed  CAS  Google Scholar 

  98. Rajvanshi P, Shulman HM, Sievers EL, et al. (2002) Hepatic sinusoidal obstruction after gemtuzumab ozogamicin (Mylotarg) therapy. Blood 99(7):2310–2314

    Article  PubMed  CAS  Google Scholar 

  99. Wadleigh M, Richardson PG, Zahrieh D, et al. (2003) Prior gemtuzumab ozogamicin exposure significantly increases the risk of veno-occlusive disease in patients who undergo myeloablative allogeneic stem cell transplantation. Blood 102(5):1578–1582

    Article  PubMed  CAS  Google Scholar 

  100. Giles F, Verstovsek S, Thomas D, et al. (2005) Phase I study of cloretazine (VNP40101M), a novel sulfonylhydrazine alkylating agent, combined with cytarabine in patients with refractory leukemia. Clin Cancer Res 11(21):7817–7824

    Article  PubMed  CAS  Google Scholar 

  101. Giles F, Verstovsek S, Faderl S, et al. (2006) A phase II study of cloretazine (VNP40101M), a novel sulfonylhydrazine alkylating agent, in patients with very high risk relapsed acute myeloid leukemia. Leuk Res 30(12):1591–1595

    Article  PubMed  CAS  Google Scholar 

  102. Smith BD, Levis M, Beran M, et al. (2004) Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 103(10):3669–3676

    Article  PubMed  CAS  Google Scholar 

  103. Giles FJ, Stopeck AT, Silverman LR, et al. (2003) SU5416, a small molecule tyrosine kinase receptor inhibitor, has biologic activity in patients with refractory acute myeloid leukemia or myelodysplastic syndromes. Blood 102(3):795–801

    Article  PubMed  CAS  Google Scholar 

  104. Karp JE, Lancet JE, Kaufmann SH, et al. (2001) Clinical and biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: A phase 1 clinical-laboratory correlative trial. Blood 97(11):3361–3369

    Article  PubMed  CAS  Google Scholar 

  105. Marcucci G, Stock W, Swiebe J, et al. (2003) Clinical activity of Genasense (GNS, Oblimersen Sodium), in combination with daunorubicin and cytarabine: A phase I study in previously untreated elderly acute myeloid leukemia. Blood 385a (abstr)

    Google Scholar 

  106. Lubbert M, Minden M (2005) Decitabine in acute myeloid leukemia. Semin Hematol 42(3 Suppl 2):S38–42

    Article  PubMed  Google Scholar 

  107. Levis M, Smith B. D., Beran M B, MR, et al. (2005) A randomized, open-label study of Lestaurtinib (CEP-701), an oral FLT3 inhibitor, administered in sequence with chemotherapy in patients with relapse AML harboring FLT3 activating mutations: Clinical response correlates with successful FLT3 inhibition. Blood 106(11):121a (abstr)

    Google Scholar 

  108. Stone RM, Fischer T, Paquette R, et al. (2005) Phase IB study of PKC412, and oral FLT3 kinase inhibitor, in sequential and simultaneous combinations with daunorubicin and cytarabine (DA) induction and high-dose cytarabine consolidation in newly diagnosed patients with AML. Blood 106(11):121a (abstr)

    Google Scholar 

  109. Melnick A, Licht JD (1999) Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 93(10):3167–3215

    PubMed  CAS  Google Scholar 

  110. Diverio D, Rossi V, Avvisati G, et al. (1998) Early detection of relapse by prospective reverse transcriptase-polymerase chain reaction analysis of the PML/RARalpha fusion gene in patients with acute promyelocytic leukemia enrolled in the GIMEMAAIEOP multicenter “AIDA” trial. GIMEMA-AIEOP Multicenter “AIDA” Trial. Blood 92(3):784–789

    PubMed  CAS  Google Scholar 

  111. Ikeda K, Sasaki K, Tasaka T, et al. (1993) Reverse transcriptionpolymerase chain reaction for PML-RAR alpha fusion transcripts in acute promyelocytic leukemia and its application to minimal residual leukemia detection. Leukemia 7(4):544–548

    PubMed  CAS  Google Scholar 

  112. Tallman MS, Nabhan C, Feusner JH, et al. (2002) Acute promyelocytic leukemia: Evolving therapeutic strategies. Blood 99(3): 759–767

    Article  PubMed  CAS  Google Scholar 

  113. Douer D (2002) New advances in the treatment of acute promyelocytic leukemia. Int J Hematol 76(Suppl 2):179–187

    Article  PubMed  Google Scholar 

  114. Ohno R, Asou N, Ohnishi K (2003) Treatment of acute promyelocytic leukemia: Strategy toward further increase of cure rate. Leukemia 17(8):1454–1463

    Article  PubMed  CAS  Google Scholar 

  115. Fenaux P, Chomienne C, Degos L (2001) All-trans retinoic acid and chemotherapy in the treatment of acute promyelocytic leukemia. Semin Hematol 38(1):13–25

    Article  PubMed  CAS  Google Scholar 

  116. Kwong YL, Au WY, Chim CS, et al. (2001) Arsenic trioxide-and idarubicin-induced remissions in relapsed acute promyelocytic leukaemia: Clinicopathological and molecular features of a pilot study. Am J Hematol 66(4):274–279

    Article  PubMed  CAS  Google Scholar 

  117. Raffoux E, Rousselot P, Poupon J, et al. (2003) Combined treatment with arsenic trioxide and all-trans-retinoic acid in patients with relapsed acute promyelocytic leukemia. J Clin Oncol 21(12):2326–2334

    Article  PubMed  CAS  Google Scholar 

  118. Lo-Coco F, Cimino G, Breccia M, et al. (2004) Gemtuzumab ozogamicin (Mylotarg) as a single agent for molecularly relapsed acute promyelocytic leukemia. Blood 104(7):1995–1999

    Article  PubMed  CAS  Google Scholar 

  119. Niu C, Yan H, Yu T, et al. (1999) Studies on treatment of acute promyelocytic leukemia with arsenic trioxide: Remission induction, follow-up, and molecular monitoring in 11 newly diagnosed and 47 relapsed acute promyelocytic leukemia patients. Blood 94(10):3315–3324

    PubMed  CAS  Google Scholar 

  120. Chen GQ, Shi XG, Tang W, et al. (1997) Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood 89(9):3345–3353

    PubMed  CAS  Google Scholar 

  121. Miller WH, Jr (2002) Molecular targets of arsenic trioxide in malignant cells. Oncologist 7(Suppl 1):14–19

    Article  PubMed  CAS  Google Scholar 

  122. Zang P, Wang S, Hu XH (1996) Arsenic trioxide treated 72 cases of acute promeylocytic leukemia. Clin J Hematol 17:58–62

    Google Scholar 

  123. Soignet SL, Maslak P, Wang ZG, et al. (1998) Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med 339(19):1341–1348

    Article  PubMed  CAS  Google Scholar 

  124. Soignet SL, Frankel SR, Douer D, et al. (2001) United States multicenter study of arsenic trioxide in relapsed acute promyelocytic leukemia. J Clin Oncol 19(18):3852–3860

    PubMed  CAS  Google Scholar 

  125. Shen ZX, Chen GQ, Ni JH, et al. (1997) Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 89(9):3354–3360

    PubMed  CAS  Google Scholar 

  126. Meloni G, Diverio D, Vignetti M, et al. (1997) Autologous bone marrow transplantation for acute promyelocytic leukemia in second remission: Prognostic relevance of pretransplant minimal residual disease assessment by reverse-transcription polymerase chain reaction of the PML/RAR alpha fusion gene. Blood 90(3):1321–1325

    PubMed  CAS  Google Scholar 

  127. de Botton S, Fawaz A, Chevret S, et al. (2005) Autologous and allogeneic stem-cell transplantation as salvage treatment of acute promyelocytic leukemia initially treated with all-trans-retinoic acid: A retrospective analysis of the European acute promyelocytic leukemia group. J Clin Oncol 23(1):120–126

    Article  PubMed  CAS  Google Scholar 

  128. Sanz M, Arcese W, de la Rubia J, et al. (2000) Stem cell transplantation (SCT) for acute promyelocytic leukemia (APL) in the ATRA era: A survey of the European. Blood and Marrow Transplantation Group (EBMT). Blood 96:2246 (abstr)

    Google Scholar 

  129. Guglielmi C, Martelli MP, Diverio D, et al. (1998) Immunophenotype of adult and childhood acute promyelocytic leukaemia: Correlation with morphology, type of PML gene breakpoint and clinical outcome. A cooperative Italian study on 196 cases. Br J Haematol 102(4):1035–1041

    Article  PubMed  CAS  Google Scholar 

  130. Paietta E (2003) Expression of cell-surface antigens in acute promyelocytic leukaemia. Best Pract Res Clin Haematol 16(3):369–385

    Article  PubMed  CAS  Google Scholar 

  131. Paietta E, Andersen J, Gallagher R, et al. (1994) The immunophenotype of acute promyelocytic leukemia (APL): An ECOG study. Leukemia 8(7):1108–1112

    PubMed  CAS  Google Scholar 

  132. Bernard J, Weil M, Boiron M, et al. (1973) Acute promyelocytic leukemia: Results of treatment by daunorubicin. Blood 41(4): 489–496

    PubMed  CAS  Google Scholar 

  133. Petti MC, Pinazzi MB, Diverio D, et al. (2001) Prolonged molecular remission in advanced acute promyelocytic leukaemia after treatment with gemtuzumab ozogamicin (Mylotarg CMA-676). Br J Haematol 115(1):63–65

    Article  PubMed  CAS  Google Scholar 

  134. Liso V, Specchia G, Pogliani EM, et al. (1998) Extramedullary involvement in patients with acute promyelocytic leukemia: A report of seven cases. Cancer 83(8):1522–1528

    Article  PubMed  CAS  Google Scholar 

  135. Byrd JC, Edenfield WJ, Shields DJ, et al. (1995) Extramedullary myeloid cell tumors in acute nonlymphocytic leukemia: A clinical review. J Clin Oncol 13(7):1800–1816

    PubMed  CAS  Google Scholar 

  136. Evans GD, Grimwade DJ (1999) Extramedullary disease in acute promyelocytic leukemia. Leuk Lymphoma 33(3–4):219–229

    PubMed  CAS  Google Scholar 

  137. Hickstein DD, Hickey MJ, Collins SJ (1988) Transcriptional regulation of the leukocyte adherence protein beta subunit during human myeloid cell differentiation. J Biol Chem 263(27):13863–13867

    PubMed  CAS  Google Scholar 

  138. Ravandi F, Cortes J, Estrov Z, et al. (2002) CD56 expression predicts occurrence of CNS disease in acute lymphoblastic leukemia. Leuk Res 26(7):643–649

    Article  PubMed  CAS  Google Scholar 

  139. Specchia G, Lo Coco F, Vignetti M, et al. (2001) Extramedullary involvement at relapse in acute promyelocytic leukemia patients treated or not with all-trans retinoic acid: A report by the Gruppo Italiano Malattie Ematologiche dell’Adulto. J Clin Oncol 19(20):4023–4028

    PubMed  CAS  Google Scholar 

  140. Breccia M, Petti MC, Testi AM, et al. (2002) Ear involvement in acute promyelocytic leukemia at relapse: A disease-associated “sanctuary”? Leukemia 16(6):1127–1130

    Article  PubMed  CAS  Google Scholar 

  141. de Botton S, Sanz MA, Chevret S, et al. (2006) Extramedullary relapse in acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy. Leukemia 20(1):35–41

    Article  PubMed  CAS  Google Scholar 

  142. Lengfelder E, Reichert A, Schoch C, et al. (2000) Double induction strategy including high dose cytarabine in combination with alltrans retinoic acid: Effects in patients with newly diagnosed acute promyelocytic leukemia. German AML Cooperative Group. Leukemia 14(8):1362–1370

    Article  PubMed  CAS  Google Scholar 

  143. Lo Coco F, Avvisati G, Vignetti M, et al. (2004) Front-line treatment of acuate promyelocytic leukemia with aIDA induction followed by risk-adapted consolidation: Results of the AIDA-2000 trial of the Italian GIMEMA Group. Blood 104(11):115a

    Google Scholar 

  144. Buccisano F, Maurillo L, Gattei V, et al. (2006) The kinetics of reduction of minimal residual disease impacts on duration of response and survival of patients with acute myeloid leukemia. Leukemia 20:1783–1789

    Article  PubMed  CAS  Google Scholar 

  145. Del Poeta G, Venditti A, Del Principe MI, et al. (2003) Amount of spontaneous apoptosis detected by Bax/Bcl-2 ratio predicts outcome in acute myeloid leukemia (AML). Blood 101(6):2125–2131

    Article  PubMed  CAS  Google Scholar 

  146. Wilson CS, Davidson GS, Martin SB, et al. (2006) Gene expression profiling of adult acute myeloid leukemia identifies novel biologic clusters for risk classification and outcome prediction. Blood 108(2):685–696

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Abutalib, S., Tallman, M.S. (2008). Relapsed and Refractory Acute Myeloid Leukemia. In: Acute Leukemias. Hematologic Malignancies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72304-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72304-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72302-8

  • Online ISBN: 978-3-540-72304-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics