Skip to main content

GFBA: A Biclustering Algorithm for Discovering Value-Coherent Biclusters

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4463))

Included in the following conference series:

Abstract

Clustering has been one of the most popular approaches used in gene expression data analysis. A clustering method is typically used to partition genes according to their similarity of expression under different conditions. However, it is often the case that some genes behave similarly only on a subset of conditions and their behavior is uncorrelated over the rest of the conditions. As traditional clustering methods will fail to identify such gene groups, the biclustering paradigm is introduced recently to overcome this limitation. In contrast to traditional clustering, a biclustering method produces biclusters, each of which identifies a set of genes and a set of conditions under which these genes behave similarly. The boundary of a bicluster is usually fuzzy in practice as genes and conditions can belong to multiple biclusters at the same time but with different membership degrees. However, to the best of our knowledge, a method that can discover fuzzy value-coherent biclusters is still missing. In this paper, (i) we propose a new fuzzy bicluster model for value-coherent biclusters; (ii) based on this model, we define an objective function whose minimum will characterize good fuzzy value-coherent biclusters; and (iii) we propose a genetic algorithm based method, Genetic Fuzzy Biclustering Algorithm (GFBA), to identify fuzzy value-coherent biclusters. Our experiments show that GFBA is very efficient in converging to the global optimum.

This work was partially supported by the Agricultural Experiment Station at the University of the District of Columbia (Project No.: DC-0LIANG; Accession No.: 0203877).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proc. of the 8th International Conference on Intelligent Systems for Molecular Biology, pp. 93–103 (2000)

    Google Scholar 

  2. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1, 24–45 (2004)

    Article  Google Scholar 

  3. Hartigan, J.: Direct clustering of a data matrix. Journal of American Statistical Association 67(337), 123–129 (1972)

    Article  Google Scholar 

  4. Tibshirani, R., et al.: Clustering methods for the analysis of DNA microarray data. Technical report, Dept. of Health Research and Policy, Dept. of Genetics, and Dept. of Biochemistry, Stanford Univ. (1999)

    Google Scholar 

  5. Cho, H., et al.: Minimum sum-squared residue coclustering of gene expression data. In: Proc. of Fourth SIAM Int’l Conf. Data Mining (2004)

    Google Scholar 

  6. Getz, G., Levine, E., Domany, E.: Coupled two-way clustering analysis of gene microarray data. Proc. of the Natural Academy of Sciences USA, 12079–12084 (2000)

    Google Scholar 

  7. Califano, A., Stolovitzky, G., Tu, Y.: Analysis of gene expression microarays for phenotype classification. In: Proc. of Intl Conf. Computacional Molecular Biology, pp. 75–85 (2000)

    Google Scholar 

  8. Sheng, Q., Moreau, Y., Moor, B.D.: Biclustering microarray data by gibbs sampling. Bioinformatics 19, ii196–ii205 (2003)

    Article  Google Scholar 

  9. Segal, E., et al.: Rich probabilistic models for gene expression. Bioinformatics 17, S243–S252 (2001)

    Google Scholar 

  10. Yang, J., et al.: Enhanced biclustering on expression data. In: Proc. of 3rd IEEE Conference on Bioinformatics and Bioengineering, pp. 321–327 (2003)

    Google Scholar 

  11. Tang, C., Zhang, L., Ramanathan, M.: Interrelated two way clustering: an unsupervised approach for gene expression data analysis. In: Proc. of the 2nd IEEE International Symposium on Bioinformatics and Bioengineering, pp. 41–48 (2001)

    Google Scholar 

  12. Lazzeroni, L., Owen, A.: Plaid models for gene expression data. Technical report, Stanford Univ. (2000)

    Google Scholar 

  13. Bleuler, S., Prelic, A., Zitzler, E.: An EA framework for biclustering of gene expression data. In: Proc. of Congress on Evolutionary Computation CEC2004., vol. 1, pp. 166–173 (2004)

    Google Scholar 

  14. Chakraborty, A., Maka, H.: Biclustering of gene expression data using genetic algorithm. In: Proc. of the 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, pp. 1–8 (2005)

    Google Scholar 

  15. Ben-Dor, A., et al.: Discovering local structure in gene expression data: The order- preserving submatrix problem. In: Proc. of the Sixth Int Conf. Computational Biology, pp. 49–57 (2002)

    Google Scholar 

  16. Liu, J., Wang, W.: OP-Cluster: Clustering by tendency in high dimensional space. In: Proc. of Third IEEE Intl Conf. Data Mining, pp. 187–194 (2003)

    Google Scholar 

  17. Zadeh, L.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  18. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)

    MATH  Google Scholar 

  19. Dave, R.N.: Characterization and detection of noise in clustering. Pattern Recognition Letters 12(11), 657–664 (1991)

    Article  Google Scholar 

  20. Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. IEEE Transactions on Fuzzy Systems 1(2), 98–110 (1993)

    Article  Google Scholar 

  21. Fei, X., et al.: GFBA: A genetic fuzzy biclustering algorithm for discovering value-coherent biclusters, TR-DB-102006-FLPL. Technical report, Dept. of Computer Science, Wayne State Univ. (August 2006), http://paris.cs.wayne.edu/~aw6056/paper.pdf

  22. Dembele, D., Kastner, P.: Fuzzy c-means method for clustering microarray data. Bioinformatics 19(8), 973–980 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ion Măndoiu Alexander Zelikovsky

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fei, X., Lu, S., Pop, H.F., Liang, L.R. (2007). GFBA: A Biclustering Algorithm for Discovering Value-Coherent Biclusters. In: Măndoiu, I., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2007. Lecture Notes in Computer Science(), vol 4463. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72031-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72031-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72030-0

  • Online ISBN: 978-3-540-72031-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics