Skip to main content
  • 1345 Accesses

Abstract

Full-thickness macular holes are associated with corresponding markedly increased intensity in autofluorescence (Fig. 18.1) [5, 7, 15, 23]. In the absence of neurosensory retina, there is also no luteal pigment. Hence, the excitation and emission light can directly pass to and from the uncovered retinal pigment epithelium (RPE). The affected area also corresponds well to hyperfluorescence seen with fluorescein angiography. By optical coherence tomography, the edges of the macular hole are often upturned, presenting an increased thickness for the excitation light to pass through, which may explain the decreased autofluorescence intensity sometimes seen surrounding the hole. The attached operculum in stage 2 macular holes and the preretinal operculum in stage 3 macular holes show a focally decreased autofluorescence from blocking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allikmets R, Singh N, Sun H, et al. (1997) A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet 15:236–246

    Article  PubMed  CAS  Google Scholar 

  2. Bergen AA, Plomp AS, Schuurman EJ, et al. (2000) Mutations in ABCC6 cause pseudoxanthoma elasticum. Nat Genet 25:228–231

    Article  PubMed  CAS  Google Scholar 

  3. Buettner H (1975) Congenital hypertrophy of the retinal pigment epithelium. Am J Ophthalmol 79:177–189

    PubMed  CAS  Google Scholar 

  4. Chassaing N, Martin L, Calvas P, et al. (2005) Pseudoxanthoma elasticum: a clinical, pathophysiological and genetic update including 11 novel ABCC6 mutations. J Med Genet 42:881–892

    Article  PubMed  CAS  Google Scholar 

  5. Ciardella AP, Lee GC, Langton K, et al. (2004) Autofluorescence as a novel approach to diagnosing macular holes. Am J Ophthalmol 137:956–959

    Article  PubMed  Google Scholar 

  6. Curran RE, Robb RM (1976) Isolated foveal hypoplasia. Arch Ophthalmol 94:48–50

    PubMed  CAS  Google Scholar 

  7. Framme C, Roider J (2001) Fundus autofluorescence in macular hole surgery. Ophthalmic Surg Lasers 32:383–390

    PubMed  CAS  Google Scholar 

  8. Katz BJ, Pomeranz HD (2006) Visual field defects and retinal nerve fiber layer defects in eyes with buried optic nerve drusen. Am J Ophthalmol 141:248–253

    Article  PubMed  Google Scholar 

  9. Kellner U, Renner AB, Tillack H (2006) Fundus autofluorescence and mfERG for early detection of retinal alterations in patients using chloroquine/hydroxychloroquine. Invest Ophthalmol Vis Sci 47:3531–3538

    Article  PubMed  Google Scholar 

  10. Kurz-Levin MM, Landau K (1999) A comparison of imaging techniques for diagnosing drusen of the optic nerve head. Arch Ophthalmol 117:1045–1049

    PubMed  CAS  Google Scholar 

  11. Le Saux O, Urban Z, Tschuch C, et al. (2000) Mutations in a gene encoding an ABC transporter cause pseudoxanthoma elasticum. Nat Genet 25:223–227

    Article  PubMed  CAS  Google Scholar 

  12. Lloyd WC 3rd, Eagle RC Jr, Shields JA, et al. (1990) Congenital hypertrophy of the retinal pigment epithelium. Electron microscopic and morphometric observations. Ophthalmology 97:1052–1060

    PubMed  Google Scholar 

  13. McGuire DE, Weinreb RN, Goldbaum MH (2003) Foveal hypoplasia demonstrated in vivo with optical coherence tomography. Am J Ophthalmol 135:112–114

    Article  PubMed  Google Scholar 

  14. Meyer CH, Lapolice DJ, Freedman SF (2003) Foveal hypoplasia demonstrated in vivo with optical coherence tomography. Am J Ophthalmol 136:397; author reply 397–398

    Article  PubMed  Google Scholar 

  15. Milani P, Seidenari P, Carmassi L, Bottoni F (2007) Spontaneous resolution of a full thickness idiopathic macular hole: fundus autofluorescence and OCT imaging. Graefes Arch Clin Exp Ophthalmol

    Google Scholar 

  16. Mustonen E, Nieminen H (1982) Optic disc drusen—a photographic study. I. Autofluorescence pictures and fluorescein angiography. Acta Ophthalmol (Copenh) 60:849–858

    Article  CAS  Google Scholar 

  17. Neetens A, Burvenich H (1977) Autofluorescence of optic disc-drusen. Bull Soc Belge Ophtalmol 179:103–110

    PubMed  CAS  Google Scholar 

  18. Oliver MD, Dotan SA, Chemke J, Abraham FA (1987) Isolated foveal hypoplasia. Br J Ophthalmol 71:926–930

    Article  PubMed  CAS  Google Scholar 

  19. Parsons MA, Rennie IG, Rundle PA, et al. (2005) Congenital hypertrophy of retinal pigment epithelium: a clinico-pathological case report. Br J Ophthalmol 89:920–921

    Article  PubMed  CAS  Google Scholar 

  20. Ringpfeil F, Lebwohl MG, Christiano AM, Uitto J (2000) Pseudoxanthoma elasticum: mutations in the MRP6 gene encoding a transmembrane ATP-binding cassette (ABC) transporter. Proc Natl Acad Sci USA 97:6001–6006

    Article  PubMed  CAS  Google Scholar 

  21. Roh S, Noecker RJ, Schuman JS, et al. (1998) Effect of optic nerve head drusen on nerve fiber layer thickness. Ophthalmology 105:878–885

    Article  PubMed  CAS  Google Scholar 

  22. Sawa M, Ober MD, Freund KB, Spaide RF (2006) Fundus autofluorescence in patients with pseudoxanthoma elasticum. Ophthalmology 113:814–820 e812

    Article  PubMed  Google Scholar 

  23. von Rückmann A, Fitzke FW, Gregor ZJ (1998) Fundus autofluorescence in patients with macular holes imaged with a laser scanning ophthalmoscope. Br J Ophthalmol 82:346–351

    Google Scholar 

  24. Wu S, Slakter JS, Shields JA, Spaide RF (2005) Cancer-associated nummular loss of the pigment epithelium. Am J Ophthalmol 139:933–935

    Article  PubMed  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Miscellaneous. In: Holz, F., Spaide, R., Bird, A., Schmitz-Valckenberg, S. (eds) Atlas of Fundus Autofluorscence Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71994-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71994-6_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71993-9

  • Online ISBN: 978-3-540-71994-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics