Skip to main content

Chorioretinal Inflammatory Disorders

  • Chapter
Atlas of Fundus Autofluorscence Imaging

Abstract

Autofluorescence photography complements other methods of imaging the ocular fundus. The amount of autofluorescence is governed by the amount of fluorophores in any given area in the fundus. Inflammation can alter the amounts of fluorophores during acute phases, and the injured tissue behaves according to observable rules during resolution. Choroidal neovascularization (CNV) associated with intraocular inflammation is a common complication, and this secondary CNV produces characteristic autofluorescence findings. By observing autofluorescence characteristics, we can estimate the extent of damage, diagnose sequelae such as secondary CNV, learn more about the inflammatory process in question, and possibly anticipate future problems caused by disease. However, autofluorescence photography is almost always used with alternate means of imaging, such as optical coherence tomography (OCT), fluorescein angiography, and indocyanine green (ICG) angiography. Autofluorescence photography contributes information that alternate methods of imaging cannot and does so through a noninvasive means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellmann G, Holz FG, Breitbart A, Volcker HE (1999) Bilateral acute syphilitische posteriore plakoide chorioretinopathy (ASPPC). Ophthalmologe 96:522–528

    Article  PubMed  CAS  Google Scholar 

  2. Deutman AF, Oosterhuis JA, Boen-Tan TN, Aan De Kerk AL (1972) Acute posterior multifocal placoid pigment epitheliopathy. Pigment epitheliopathy or choriocapillaritis? Brit J Ophthal 56:863–874

    Article  PubMed  CAS  Google Scholar 

  3. Dreyer RF, Gass DJ (1984) Multifocal choroiditis and panuveitis. A syndrome that mimics ocular histoplasmosis. Arch Ophthalmol 102:1776–1784

    PubMed  CAS  Google Scholar 

  4. Gass JD, Agarwal A, Scott IU (2002) Acute zonal occult outer retinopathy: a long-term follow-up study. Am J Ophthalmol 134:329–339

    Article  PubMed  Google Scholar 

  5. Gass JD, Braunstein RA, Chenoweth RG (1990) Acute syphilitic posterior placoid chorioretinitis. Ophthalmology 97:1288–1297

    PubMed  CAS  Google Scholar 

  6. Gass JD (1993) Acute zonal occult outer retinopathy. Donders Lecture: The Netherlands Ophthalmological Society, Maastricht, Holland, June 19, 1992. J Clin Neuroophthalmol 13:79–97

    PubMed  CAS  Google Scholar 

  7. Gass JD (2003) Are acute zonal occult outer retinopathy and the white spot syndromes (AZOOR complex) specific autoimmune diseases? Am J Ophthalmol 135:380–381

    Article  PubMed  Google Scholar 

  8. Gass JDM (1968) Acute posterior multifocal placoid pigment epitheliopathy. Arch Ophthalmol 80:177–185

    PubMed  CAS  Google Scholar 

  9. Grossniklaus HE, Gass JD (1998) Clinicopathologic correlations of surgically excised type 1 and type 2 submacular choroidal neovascular membranes. Am J Ophthalmol 126:59–69

    Article  PubMed  CAS  Google Scholar 

  10. Haen SP, Spaide RF. Fundus autofluorescence in multifocal choroiditis and panuveitis (in preparation)

    Google Scholar 

  11. Hegedus ZL (2000) The probable involvement of soluble and deposited melanins, their inter­mediates and the reactive oxygen side-products in human diseases and aging. Toxicology 145:85–101

    Article  PubMed  CAS  Google Scholar 

  12. Howe LJ, Woon H, Graham EM, Fitzke F, Bhandari A, Marshall J (1995) Choroidal hypoperfusion in acute posterior multifocal placoid pigment epitheliopathy. An indocyanine green angiography study. Ophthalmology 102:790–798

    PubMed  CAS  Google Scholar 

  13. Jampol LM, Becker KG (2003) White spot syndromes of the retina: a hypothesis based on the common genetic hypothesis of autoimmune/inflammatory disease. Am J Ophthalmol 135:376–379

    Article  PubMed  Google Scholar 

  14. Kayatz P, Thumann G, Luther TT, Jordan JF, Bartz-Schmidt KU, Esser PJ, Schraermeyer U (2001) Oxidation causes melanin fluorescence. Invest Ophthalmol Vis Sci 42:241–246

    PubMed  CAS  Google Scholar 

  15. Lofoco G, Ciucci F, Bardocci A, et al. (2005) Optical coherence tomography findings in a case of acute multifocal posterior placoid pigment epitheliopathy (AMPPPE). Eur J Ophthalmol 15:143–147

    PubMed  CAS  Google Scholar 

  16. Matsumoto Y, Spaide RF. Autofluorescence imaging of acute syphilitic posterior placoid chorio­retinitis. Retina (in press)

    Google Scholar 

  17. Nozik RA, Dorsch W (1973) A new chorioretinopathy associated with anterior uveitis. Am J Ophthalmol 76:758–762

    PubMed  CAS  Google Scholar 

  18. Peters S, Kayatz P, Heimann K, Schraermeyer U (2000) Subretinal injection of rod outer segments leads to an increase in the number of early-stage melanosomes in retinal pigment epithelial cells. Ophthalmic Res 32:52–56

    Article  PubMed  CAS  Google Scholar 

  19. Rothova A, Berendschot TT, Probst K, et al. (2004) Birdshot chorioretinopathy: long-term manifest­ations and visual prognosis. Ophthalmology 111:954–959

    Article  PubMed  Google Scholar 

  20. Ryan SJ, Maumenee AE (1980) Birdshot retinochoroidopathy. Am J Ophthalmol 89:31–45

    PubMed  CAS  Google Scholar 

  21. Sarna T, Burke JM, Korytowski W, et al. (2003) Loss of melanin from human RPE with aging: possible role of melanin photooxidation. Exp Eye Res 76:89–98

    Article  PubMed  CAS  Google Scholar 

  22. Schraermeyer U, Peters S, Thumann G, Kociok N, Heimann K (1999) Melanin granules of retinal pigment epithelium are connected with the lysosomal degradation pathway. Exp Eye Res 68:237–245

    Article  PubMed  CAS  Google Scholar 

  23. Schraermeyer U (1996) The intracellular origin of the melanosome in pigment cells: a review of ultrastructural data. Histol Histopathol 11:445–462

    PubMed  CAS  Google Scholar 

  24. Slakter JS, Giovannini A, Yannuzzi LA et al. (1997) Indocyanine green angiography of multifocal choroiditis. Ophthalmology 104:1813–1819

    PubMed  CAS  Google Scholar 

  25. Smith RE, Ganley JP, Knox DL (1972) Presumed ocular histoplasmosis. II. Patterns of peripheral and peripapillary scarring in persons with nonmacular disease. Arch Ophthalmol 87:251–257

    PubMed  CAS  Google Scholar 

  26. Spaide RF, Klancnik JM Jr (2005) Fundus autofluorescence and central serous chorioretinopathy. Ophthalmology 112:825–833

    Article  PubMed  Google Scholar 

  27. Spaide RF, Noble K, Morgan A, Freund KB (2006) Vitelliform macular dystrophy. Ophthalmology 113:1392–1400

    Article  PubMed  Google Scholar 

  28. Spaide RF, Yannuzzi LA, Slakter J (1992) Choroidal vasculitis in acute posterior multifocal placoid pigment epitheliopathy. Br J Ophthalmol 1991;75:685–7. Erratum in Br J Ophthalmol 76:128

    Google Scholar 

  29. Spaide RF (2006) Autofluorescence imaging of acute posterior multifocal placoid pigment epithe­liopathy. Retina 26:479–842

    Article  PubMed  Google Scholar 

  30. Spaide RF (2004) Collateral damage in acute zonal occult outer retinopathy. Am J Ophthalmol 138:887–889

    Article  PubMed  Google Scholar 

  31. Spaide RF (2003) Fundus autofluorescence and age-related macular degeneration. Ophthalmology 110:392–399

    Article  PubMed  Google Scholar 

  32. Takagi T, Tsuda N, Watanabe F, Noguchi S (1988) Subretinal precipitates of retinal detachments associated with intraocular tumors. Ophthalmologica 197:120–126

    Article  PubMed  CAS  Google Scholar 

  33. Thumann G, Bartz-Schmidt KU, Kociok N, Heimann K, Schraemeyer U (1999) Ultimate fate of rod outer segments in the retinal pigment epithelium. Pigment Cell Res 12:311–315

    Article  PubMed  CAS  Google Scholar 

  34. Tran THA, Cassoux N, Bodaghi B, et al. (2005) Syphilitic uveitis in patients infected with human immunodeficiency virus. Graefes Arch Clin Exp Ophthalmol 243:863–869

    Article  PubMed  Google Scholar 

  35. Bryan RG, Freund KB, Yannuzzi LA, et al. (2002) Multiple evanescent white dot syndrome in patients with multifocal choroiditis. Retina 22:317–322

    Article  PubMed  Google Scholar 

  36. Gass JD, Hamed LM (1989) Acute macular neuroretinopathy and multiple evanescent white dot syndrome occurring in the same patients. Arch Ophthalmol 107:189–193

    PubMed  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Chorioretinal Inflammatory Disorders. In: Holz, F., Spaide, R., Bird, A., Schmitz-Valckenberg, S. (eds) Atlas of Fundus Autofluorscence Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71994-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71994-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71993-9

  • Online ISBN: 978-3-540-71994-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics