Skip to main content

Tropical Forests. III. Ecophysiological Responses to Drought

  • Chapter
Physiological Ecology of Tropical Plants
  • 1594 Accesses

Abstract

Seasonality of rainfall (Sect. 3.1) can lead to the formation of tree rings in wet tropical forests (Worbes 1999; Dünisch et al. 2003). Seasonal drought may occur regularly in these moist forests and not only in dry tropical forests. In Central and South America it can be enforced by southern oscillation or El Niño events (Engelbrecht et al. 2002). After extreme dry periods tropical rain forests may even be threatened by fire (van Nieuwstadt and Sheil 2005, Sect. 10.3). Along the 65 km across the isthmus of Panamá, where B. ENGELBRECHT and colleagues have studied tree seedling performance in relation to drought stress in the moist forests there is a gradient of forest formation due to a moisture gradient from the drier Pacific to the wetter Atlantic side (Fig. 5.1A). The number of days when no precipitation reaches the forest floor (days with lower than 3mm rain) range from 20 to more than 90 in the moist forests across the isthmus (Fig. 5.1B).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams WW, Osmond CB (1988) Internal CO2 supply during photosynthesis of sun and shade grown CAM plants in relation to photoinhibition. Plant Physiol 86:117–123

    PubMed  CAS  Google Scholar 

  • Affek HP, Yakir D (2002) Protection by isoprene against singlet oxygen in leaves. Plant Physiol 129:269–277

    Article  PubMed  CAS  Google Scholar 

  • Brodribb TJ, Holbrook NM (2003) Changes in leaf hydraulic conductance during leaf shedding in seasonally dry tropical forest. New Phytol 158:295–303

    Article  Google Scholar 

  • Brodribb TJ, Holbrook NM (2004) Diurnal depression of leaf hydraulic conductance in a tropical tree species. Plant Cell Environ 27:820–827

    Article  Google Scholar 

  • Brodribb TJ, Holbrook NM (2005) Leaf physiology does not predict leaf habit; examples from tropical dry forest. Trees 19:290–295

    Article  Google Scholar 

  • Brodribb TJ, Holbrook NM, Gutiérrez MV (2002) Hydraulic and photosynthetic co-ordination in seasonally dry tropical forest trees. Plant Cell Environ 25:1435–1444

    Article  Google Scholar 

  • Brodribb TJ, Holbrook NM, Edwards EJ, Gutiérrez MV (2003) Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant Cell Environ 26:443–450

    Article  Google Scholar 

  • Choat B, Ball MC, Luly JG, Holtum JAM (2005) Hydraulic architecture of deciduous and evergreen dry forest tree species from north-eastern Australia. Trees 19:305–311

    Article  Google Scholar 

  • Cockburn W, Ting IP, Sternberg LO (1979) Relationships between stomatal behaviour and the internal carbon dioxide concentrations in crassulacean acid metabolism plants. Plant Physiol 63:1029–1032

    Article  PubMed  CAS  Google Scholar 

  • Cunningham SC (2004) Stomatal sensitivity to vapour pressure deficit of temperate and tropical evergreen rainforest trees of Australia. Trees 18:399–407

    Article  Google Scholar 

  • Diaz M, Granadillo E (2005) The significance of episodic rains for reproductive phenology and productivity of trees in semiarid regions of north-western Venezuela. Trees 19:336–348

    Article  Google Scholar 

  • Dünisch O, Montóia VR, Bauch J (2003) Dendrochronological investigations on Swietenia macrophylla King and Cedrela odorata L. (Melicaceae) in the central Amazon. Trees 17:244–250

    Google Scholar 

  • Engelbrecht BMJ, Kursar TA (2003) Comparative drought-resistance of seedlings of 28 species of co-occurring tropical woody plants. Oecologia 136:383–393

    Article  PubMed  Google Scholar 

  • Engelbrecht BMJ, Wright SJ, Steven D de (2002) Survival and ecophysiology of tree seedlings during El Niño drought in a tropical moist forest in Panama. J Trop Ecol 18:569–579

    Article  Google Scholar 

  • Engelbrecht BMJ, Kursar TA, Tyree MT (2005) Drought effects on seedling survival in a tropical moist forest. Trees 19:312–321

    Article  Google Scholar 

  • Griffiths H (1989) Carbon dioxide concentrating mechanisms and the evolution of CAM in vascular epiphytes. In: Lüttge U (ed) Vascular plants as epiphytes: evolution and ecophysiology. Ecological studies, vol 76. Springer, Berlin Heidelberg New York, pp 42–86

    Google Scholar 

  • Griffiths H, Lüttge U, Stimmel K-H, Crook CE, Griffiths NM, Smith JAC (1986) Comparative ecophysiology of CAM and C3 bromeliads. III. Environmental influences on CO2 assimilation and transpiration. Plant Cell Environ 9:385–393

    Article  Google Scholar 

  • Haag-Kerwer A (1994) Photosynthetische Plastizität bei Clusia und Oedematopus. Dr. rer.-nat.-Thesis, Darmstadt)

    Google Scholar 

  • Holbrook NM, Franco AC (2005) From wet to dry: tropical trees in relation to water availability. Trees 19:280–281

    Article  Google Scholar 

  • Kluge M, Böhlke C, Queiroz O (1981) Crassulacean acid metabolism (CAM) in Kalanchoë. Changes in intracellular CO2 concentration during continuous light or darkness. Planta 152:87–92

    Article  CAS  Google Scholar 

  • Lerdau MT, Keller M (1997) Controls on isoprene emission from trees in a subtropical dry forest. Plant Cell Environ 20:569–578

    Article  CAS  Google Scholar 

  • Lerdau MT, Holbrook NM, Mooney HA, Rich PM, Whitbeck JL (1992) Seasonal patterns of acid fluctuations and resource storage in the arborescent cactus Opuntia excelsea in relation to light availability and size. Oecologia 92:166–171

    Article  Google Scholar 

  • Lüttge U (1987) Carbon dioxide and water demand: crassulacean acid metabolism (CAM) a versatile ecological adaptation exemplifying the need for integration in ecophysiological work. New Phytol 106:593–629

    Article  Google Scholar 

  • Lüttge U (2002) CO2-concentrating: consequences in crassulacean acid metabolism. J Exp Bot 53:2131–2142

    Article  PubMed  CAS  Google Scholar 

  • Lüttge U, Klauke B, Griffiths H, Smith JAC, Stimmel K-H (1986) Comparative ecophysiology of CAM and C3 bromeliads. V. Gas exchange and leaf structure of the C3 bromeliad Pitcairnia integrifolia. Plant Cell Environ 9:411–419

    Article  Google Scholar 

  • Meinzer FC, Goldstein G, Holbrook NM, Jackson P, Cavellier J (1993) Stomatal and environmental control of transpiration in a lowland tropical forest tree. Plant Cell Environ 16:429–436

    Article  Google Scholar 

  • Meinzer FC, Andrade JL, Goldstein G, Holbrook NM, Cavelier J, Wright SJ (1999) Partitioning of soil water among canopy trees in a seasonally dry tropical forest. Oecologia 121:293–301

    Article  Google Scholar 

  • Murali KS, Sukumar R (1993) Leaf flushing phenology and herbivory in a tropical dry deciduous forest, southern India. Oecologia 94:114–119

    Article  Google Scholar 

  • Nieuwstadt MGL van, Sheil D (2005) Drought, fire and the survival in a Borneo rain forest. J Ecol 93:191–201

    Article  Google Scholar 

  • Osmond CB (1978) Crassulacean acid metabolism: a curiosity in context. Annu Rev Plant Physiol 29:379–414

    Article  CAS  Google Scholar 

  • Osmond CB (1982) Carbon cycling and stability of the photosynthetic apparatus in CAM. In: Ting IP, Gibbs M (eds) Crassulacean acid metabolism. American Society of Plant Physiologists, Rockville, pp 112–127

    Google Scholar 

  • Parry MAJ, Andralojc PJ, Khan S, Lea PJ, Keys AJ (2002) Rubisco activity: effects of drought stress. Ann Bot 89:833–839

    Article  PubMed  CAS  Google Scholar 

  • Pathre U, Sinha AK, Shirke PA, Sane PV (1998) Factors determining the midday depression of photosynthesis in trees under monsoon climate.Trees 12:472–481

    Article  Google Scholar 

  • Peñuelas J, Llusià J, Asensio D, Munné-Bosch S (2005) Linking isoprene with plant thermotolerance, antioxidants and monoterpene emissions. Plant Cell Environ 28:278–286

    Article  Google Scholar 

  • Phillips N, Bond BJ, Ryan MG (2001) Gas exchange and hydraulic properties in the crowns of two tree species in a Panamanian moist forest. Trees 15:123–130

    Article  Google Scholar 

  • Pierce S, Maxwell K, Griffiths H, Winter K (2001) Hydrophobic trichome layers and epicuticular wax powders in Bromeliaceae. Am J Bot 88:1371–1389

    Article  Google Scholar 

  • Rascher U, Bobich EG, Lin GH, Walter A, Morris T, Naumann M, Nichol CJ, Pierce D, Bil K, Kudeyarov V, Berry JA (2004) Functional diversity of photosynthesis during drought in a model tropical rainforest – the contributions of leaf area, photosynthetic electron transport and stomatal conductance to reduction in net ecosystem carbon exchange. Plant Cell Environ 27:1239–1256

    Article  CAS  Google Scholar 

  • Rentería LY, Jaramillo VJ, Martínez-Yrézar A, Pérez-Jiménez A (2005) Nitrogen and phosphorus resorption in trees of a Mexican tropical dry forest. Trees 19:431–441

    Article  CAS  Google Scholar 

  • Schulze E-D, Lange OL, Evenari M, Kappen L, Buschbom U (1974) The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions. I. A simulation of the daily course of stomatal resistance. Oecologia 17:159–170

    Article  Google Scholar 

  • Schulze E-D, Lange OL, Evenari M, Kappen L, Buschbom U (1975a) The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions. III. The effect on water use efficiency. Oecologia 19:303–314

    Google Scholar 

  • Schulze E-D, Lange OL, Kappen L, Evenari M, Buschbom U (1975b) The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions. II. The significance of leaf water status and internal carbon dioxide concentration. Oecologia 18:219–233

    Article  Google Scholar 

  • Sharkey TD, Yeh SS (2001) Isoprene emission from plants. Annu Rev Plant Physiol Plant Mol Biol 52:407–436

    Article  PubMed  CAS  Google Scholar 

  • Smith JAC, Lüttge U (1985) Day-night changes in leaf water relations associated with the rhythm of crassulacean acid metabolism in Kalanchoë daigremontiana. Planta 163:272–282

    Article  CAS  Google Scholar 

  • Sobrado MA (1993) Trade-off between water transport efficiency and leaf life-span in a tropical forest. Oecologia 96:19–23

    Article  Google Scholar 

  • Sobrado MA (1995) Seasonal differences in nitrogen storage in deciduous and evergreen species of a tropical dry forest. Biol Plant 37:291–295

    Google Scholar 

  • Sobrado MA (2003) Hydraulic characteristics and leaf water use efficiency in trees from tropical montane habitats. Trees 17:400–406

    Google Scholar 

  • Tenhunen JD, Lange OL, Braun M, Meyer A, Lösch R, Pereira JS (1980) Midday stomatal closure in Arbutus unedo leaves in a natural macchia under simulated habitat conditions in an environmental chamber. Oecologia 47:365–367

    Article  Google Scholar 

  • Tenhunen JD, Lange OL, Braun M (1981) Midday stomatal closure in mediterranean type sclerophylls under simulated habitat conditions in an environmental chamber. II. Effect of the complex of leaf temperature and air humidity on gas exchange of Arbutus unedo and Quercus ilex. Oecologia 50:5–11

    Article  Google Scholar 

  • Tenhunen JD, Lange OL, Gebel J, Beyschlag W, Weber JA (1984) Changes in photosynthetic capacity, carboxylation efficiency, and CO2-compensation point associated with midday stomatal closure and midday depression of net CO2 exchange of leaves of Quercus suber. Planta 162:193–203

    Article  CAS  Google Scholar 

  • Tyree MT, Vargas G, Engelbrecht BMJ, Kursar TA (2002) Drought until death do us part: a case study of the desiccation-tolerance of a tropical moist forest seedling-tree, Licania platypus (Hemsl.) Fritsch. J Exp Bot 53:2239–2247

    Article  PubMed  CAS  Google Scholar 

  • Tyree MT, Engelbrecht BMJ, Vargas G, Kursar TA (2003) Desiccation tolerance of five tropical seedlings in Panama. Relationship to a field assessment of drought performance. Plant Physiol 132:1439–1447

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson MJ, Owen SM, Possell M, Hartwell J, Gould P, Hall A, Vickers C, Hewitt CN (2006) Circadian control of isoprene emissions from oil palm (Elaeis guineensis). Plant J 47:960–968

    Article  PubMed  CAS  Google Scholar 

  • Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forst Reserve in Venezuela. J Ecol 87:391–403

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Tropical Forests. III. Ecophysiological Responses to Drought. In: Physiological Ecology of Tropical Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71793-5_5

Download citation

Publish with us

Policies and ethics