Skip to main content

Large waves caused by oceanic impacts of meteorites

  • Chapter
Tsunami and Nonlinear Waves

Abstract

Impact craters can be observed on all terrestrial planets and their larger satellites. Basically every body in the solar system with a solid crust, no matter how small it is, exhibits evidence of impacts in the past. For example, the Moon provides an excellent data base of impact craters. However, the major fraction of impact events occurred between 4.6 and 3.9 Billion years ago. The impact frequency at that time was ∼ 100 times larger than it has been ever since. Figure 1 shows the craters Ptolomaeus, Alphonsus, Arzahchel and Albetegnius. The image depicts that impact craters vary form large basins of several 100 kilometres in diameter (the largest impact basin is Valhalla with 4000 km in diameter on the Jovian satellite Callisto) to structures that are only several 10’s of meters in diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grieve RAF, Robertson PB and Dence MR (1981) Constraints on the formation of ring impact structures, based on terrestrial data. In: Constraints on the formation of ring impact structures, based on terrestrial data.

    Google Scholar 

  2. Gersonde R, Deutsch A, Ivanov BA, Kyte F T (2002) Oceanic impacts — a growing field of fundamental science. Deep Sea Research 49:951–957

    Article  Google Scholar 

  3. Abels A, Plado J, Pesonen LJ, Lehtinen M (2002) The impact cratering record in Fennoscandia. In: Impacts in Precambrian Shields. Springer, Berlin Heidelberg New York

    Google Scholar 

  4. Glikson AY (1999) Oceanic mega impacts and crustal evolution. Geology 27:387–390

    Article  Google Scholar 

  5. Gault DE, Quaide WL Oberbeck VR (1968) Impact cratering mechanics and structures In: French BM, Short NM (eds) Shock Metamorphism of Natural Materials. Mono Book Co.

    Google Scholar 

  6. Turtle EP, Pierazzo E, Collins GS, Osinski GR, Melosh HJ, Morgan JV, Reimold WU, Spray JG (2005) Impact structures: What does crater diameter mean? Geological Society of Americal special paper 384: in press.

    Google Scholar 

  7. Melosh HJ (1989) Impact Cratering: A Geological Process. Oxford University Press, New York

    Google Scholar 

  8. Scott TE, Nielsen KC (1991) The effects of porosity on the brittle-ductile transition in sandstone. J. of Geophys Res 96:405–414

    Article  Google Scholar 

  9. Jaeger JC, Cook NGW (1969) Fundamentals of reock mechanics. Chapman and Hall.

    Google Scholar 

  10. Lundborg N (1968) Strength of rock-like materials. Int. J. Rock Mech. Min Sci. 5:427–454

    Article  Google Scholar 

  11. Stesky RM, Brace WF, Riley DK, Robin PYF (1974) Driction in faulted rock at high temperature and presuure. Tectonphysics 23:177–203

    Article  Google Scholar 

  12. Collins GS, Melosh HJ, Ivanov BA (2004) Modeling damage and deformation in impact simulations. Meteoritics Planet. Sci. 39:217–231

    Article  Google Scholar 

  13. Melosh HJ, Ryan EV, Asphaug E (1992) Dynamic fragmentation in impacts: Hydrocode simulations of laboratory impact. J Geophys Res. 97:14735–14759

    Article  Google Scholar 

  14. Ivanov BA, Deniem D, Neukum G (1997) Implementation of dynamic strength models into 2D hydrocodes: Applications for atmosphereic breakup and impact cratering. Int. J. Impact Engin. 20:411–430

    Article  Google Scholar 

  15. Artemieva NA, Ivanov BA (2004) Launch of martian meteorites in oblique impacts. Icarus 171:84–101

    Article  Google Scholar 

  16. Stöffler D, Artemieva NA, Pierazzo E (2004) Modeling the Ries-Steinheim impact event and the formation of the moldavite strewn field. Meteoritics Planet. Sci. 37:1893–1908

    Google Scholar 

  17. Wünnemann K, Morgan JV, Jödicke H (2005) Is Ries crater typical for its size? An analysis based upon old and new geophysical data and numerical modeling. In Kenkmann T, Hörz F, Deutsch A (eds) Large meteorite impacts III. Geol. Soc. America Special Paper 384:67–83

    Google Scholar 

  18. Melosh HJ, Ivanonv BA (1999) Impact crater collapse. Annual Review of Earth and Planetary Sci. 27:385–415

    Article  Google Scholar 

  19. Pierazzo E, Melosh HJ (2000) Melt production in oblique impacts. Icarus 145:252–261

    Article  Google Scholar 

  20. Chandrasekhar S (1981) Hydrodynamic and hydromagnetic stability. Dover Publications Inc., (New York) Chap. 2, p9–16

    Google Scholar 

  21. Ferziger JH, Peric M (1997) Computational methods of fluid dynamics. Springer (Berlin, Heildeberg) Chap. 1, p1–20

    Google Scholar 

  22. Melosh HJ (1989) Impact cratering: Geological process. Oxford University Press (New York) 245pp

    Google Scholar 

  23. Tillotson JH (1962) Metallic equation of state for hypervelocity impacts. Technical Report General Atomic Report GA-3216

    Google Scholar 

  24. Thompson SL, Lauson HS (1972) Improvements in the chart-D radiation-hydrodynamic code III: Revised analytical equation of state. Technical Report SC-RR-61 0714. Sandia National Laboratories (Albuquerque, NM)

    Google Scholar 

  25. Ahrens TJ, O’Keefe JD (1977) Equation of state and impact-induced shockwave attenuation on the moon. In Roddy DJ, Pepin DJ, Merrill RB (eds) Impact and Explosion Cratering. Pergamon (New-York) 639–656

    Google Scholar 

  26. Zel’dovich YB, Raizer YP (2002) Physics of shock waves and high-temperature hydrodynamic phenomena. In Hayes WD, Probstein RF (eds) Dover Publications (Mineola, New York), 916pp

    Google Scholar 

  27. Roddy DJ, Schuster SH, Rosenblatt M, Grant LB, Hassig PJ, Kreyenhagen KN (1987) Computer simulation of large asteroid impacts into oceanic and continental sites — preliminary results on atmospheric cratering and ejecta dynamics. Int. J. Impact. Engin 5:525–541

    Article  Google Scholar 

  28. O’Keefe JD, Ahrens TJ (1999) Complex craters: Relationship of stratigraphy and rings to impact conditions. J. Geophys. Res. 104:27091–27104

    Article  Google Scholar 

  29. O’Keefe JD, Ahrens TJ (1994) Impact-induced melting of planetary surfaces. In Dressler BO, Grieve RAF, Sharpton VL (eds) Large Meteorite Impacts and Planetary Evolution, Boulder, Colorado, Geological Society of America, Special Paper 293: 103–109

    Google Scholar 

  30. Ivanov BA, Artemieva NA (2002) Numerical modeling of fromation of large impact craters. In Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: Impacts and beyond. Geol. Soc. America Special Paper 356:619–630

    Google Scholar 

  31. Shuvalov VV, Dypvik H, Tsikalas F (2002) Numerical simulations of the Mjolnir marine impact crater. J Geophys. Res. 107:DOI10.1029/2001JE001698

    Google Scholar 

  32. Wünnemann K, Lange MA (2002) Numerical modeling of impact-induced modifications of the deep-sea floor. Deep-Sea Res. II 49:669–981

    Article  Google Scholar 

  33. McGlaun JM, Thompson SL (1990) CTH: A three-dimensional shock wave physics code. Int. J. Impact Engin. 10:351–360

    Article  Google Scholar 

  34. Shuvalov VV (1999) Multi-dimensional hydrodynamic code SOVA for interfacial flow: Applications to the thermal layer effect. Shock Wave 9: 382–390

    Google Scholar 

  35. Anderson Jr CE (1987) An overview of the theory of hydrocodes. Int J Impact Engin 5:33–59

    Article  Google Scholar 

  36. Knowles CP, Brode HL (1977) The theory of cratering phenomena, an overview. In Roddy DJ, Pepin DJ, Merrill RB (eds) Impact and Explosion Cratering. Pergamon (New-York) 369–395

    Google Scholar 

  37. Holsapple KA, Schmidt RM (1982) On the scaling of crater dimensions II — Impact. J Geophys Res 87:1849–1870

    Article  Google Scholar 

  38. Holsapple KA, Schmidt RM (1987) Point-source solution and coupling parameters in cratering mechanics. J. Geopys. Res. 92:6350–6376

    Article  Google Scholar 

  39. Holsapple KA (1993) The scaling of impact processes in planetary science. Annual Review of Earth and Planetary Sciences 21:333–373

    Article  Google Scholar 

  40. Schmidt RM, Holsapple KA (1987) Some recent advances in the scaling of impact and explosion cratering. Int. J. Imp. Engin 5:543–560

    Article  Google Scholar 

  41. Gault DE (1974) Impact cratering. In: Greeley R, Schulz PH (eds) A primer in lunar geology. Moffett Field: NASA Ames Research Center. 137–175

    Google Scholar 

  42. Dence MR (1968) Shock zoning at Canadian craters: Petrography and structural implications, in French BM, Short NM (eds) Shock metamorphism of natural materials. Baltimore, Maryland, Mono Book Cooperation 169–184

    Google Scholar 

  43. Stöffler D, Langenhorst, F (1994) Shock metamorphism of quartz in nature and experiment: I. Basic observations and theory. Meteoritics 29:155–181

    Google Scholar 

  44. Turtle EP, Pierazzo E, Collins GS, Osinski GR, Melosh HJ, Morgan JV, Reimold WU (2005) Impact structures: What does crater diamter mean? In Kenkmann T, Hörz F, Deutsch A (eds) Large meteorite impacts III. Geol. Soc. America Special Paper 384:1–24

    Google Scholar 

  45. Pike RJ (1988) Geomorphology of Impact Craters on Mercury. In: Mercury, University of Arizona Press. 165–273

    Google Scholar 

  46. Stöffler D (1972) Deformation and transformation of rock-forming minerals by natural and experimental shock processes. Fortschritte der Mineralogie 49:50–113

    Google Scholar 

  47. Jeanloz R (1980) Shock effects in olivine and implications for Hugoniot data. J Geophys Res 85:3163–3176

    Article  Google Scholar 

  48. Roddy DJ, Davis LK (1977) Shatter cones formed in large-scale experimental explosion craters. In: Roddy DJ, Pepin, RO, Merrill RB (eds) Impact and explosion cratering, Pergamon Press, New York

    Google Scholar 

  49. O’Keef JD, Ahrens TJ (1982) The interaction of the Cretaceous/Tertiary extinction bolide with the atmosphere, ocean and solid Earth. Geol Soc Amer, 190:103–120

    Google Scholar 

  50. Wünnemann, K, Ivanov B. (2003) Numerical Modelling of impact crater depth-diameter dependence in an acoustically fluidized target. Planetary and Space Science 51:831–845

    Article  Google Scholar 

  51. Melosh HJ (1977) Crater modification by gravity: A mechanical analysis of slumping. In: Roddy DJ, Pepin, RO, Merrill RB (eds) Impact and explosion cratering, Pergamon Press, New York

    Google Scholar 

  52. Wünnemann K (2001) Die Numerisch Behandlung von Impaktprozessen — Kraterbildung, stosswelleninduzierte Krustenmodifikationen und ozeanische Enschlagsereignisse. PhD Thesis at Institut of Geopyhsics, Westfälische Wilhelms Universtität.

    Google Scholar 

  53. Amsden AA, Rupel HM, Hirt CW (1080) SALE: a simplified ALE computer program for fluids at all speeds. Los Alamos National Laboratories, LA-8095

    Google Scholar 

  54. Wünnemann K, Collins GS, Melosh HJ (2006) A strain-based porosity model for use in hydrocode simulations of impacts and implications for the transient-crater growth in porous targets. Icarus 180:514–527

    Article  Google Scholar 

  55. Buttkus B (2000) Spectral analysis and filter theory in applied geophysics. Springer, Berlin Heidelberg New York

    Google Scholar 

  56. Snieder R, Trampert J (2000) Linear and nonlinear inverse problems. In: Dermanis A, Grün A, Sanso F (eds) Geomatic methods for the analysis of data in the earth sciences. Lecture notes in earth sciences, vol 95. Springer, Berlin Heidelberg New York

    Chapter  Google Scholar 

  57. Montagner, JP, Nataf HC (1986) On the inversion of the azimuthal anisotropy of surface waves. J Geophys Res 91:511–520

    Article  Google Scholar 

  58. Ross DW (1977) Lysosomes and storage diseases. MA Thesis, Columbia University, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weiss, R., Wünnemann, K. (2007). Large waves caused by oceanic impacts of meteorites. In: Kundu, A. (eds) Tsunami and Nonlinear Waves. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71256-5_11

Download citation

Publish with us

Policies and ethics