Skip to main content

Assimilation of Satellite Data in Improving Numerical Simulation of Tropical Cyclones: Progress, Challenge and Development

  • Chapter
Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications

Abstract

Tropical cyclones originate over the ocean where conventional data are very sparse. Satellites provide a very useful source of data for studying tropical cyclones. This paper gives a brief review on the recent progress in satellite data assimilation for improving the numerical simulations and forecasts of tropical cyclones. The general problems and challenges in tropical cyclone forecasting and satellite data assimilation and potential improvements in the future are also addressed in light of the most recent research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aberson SD (2002) Two years of operational hurricane synoptic surveillance. Wea Forecast 17:1101–1110

    Article  Google Scholar 

  • Aberson SD, Sampson CR (2003) On the predictability of tropical cyclone tracks in the Northwest Pacific Basin. Mon Wea Rev 131:1491–1497

    Article  Google Scholar 

  • Aberson SD, Etherton BJ (2006) Targeting and data assimilation studies during Hurricane Humberto (2001). J Atmos Sci 63:175–186

    Article  Google Scholar 

  • Bender MA, Ross RJ, Tuleya RE, Kurihara Y (1993) Improvements in tropic cyclone track and intensity forecasts using the GFDL initialization system. Mon Wea Rev 121:2046–2061

    Article  Google Scholar 

  • Bister M, Emanuel KA (1998) Dissipative heating and hurricane intensity. Meteor Atmos Phys 50:233–240

    Article  Google Scholar 

  • Black ML, Gamache JF, Marks FD, Samsury CE, Willoughby HE (2002) Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994: The effect of vertical shear on structure and intensity. Mon Wea Rev 130:2291–2312

    Article  Google Scholar 

  • Braun SA, Montgomery MT, Pu Z (2006) High-resolution simulation of Hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. J Atmos Sci 63: 19–42

    Article  Google Scholar 

  • Burpee RW, Aberson SD, Franklin JL, Lord SJ, Tuleya RE (1996) The impact of omega dropwindsondes on operational hurricane track forecast models. Bull Amer Meteor Soc 77:925–933

    Article  Google Scholar 

  • Cecil DJ, Zipser EJ (1999) Relationship between tropical cyclone intensity and satellite-based indicators of inner core convection: 85-GHz ice scattering signature and lightning. Mon Wea Rev 127: 103–123

    Article  Google Scholar 

  • Chen SH (2007) The Impact of assimilating SSM/I and QuikSCAT satellite winds on Hurricane Isidore simulation. Mon Wea Rev 135:549–566

    Article  Google Scholar 

  • Derber, JC, Wu WS (1998) The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon Wea Rev 126:2287–2299

    Google Scholar 

  • Elsberry RL, Marks FD (1999) The hurricane landfall workshop summary. Bull Amer Meteor Soc 80:683–685

    Google Scholar 

  • Emanuel KA (1986) An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J Atmos Sci 43:585–604

    Article  Google Scholar 

  • Emanuel KA (1988) The maximum intensity of hurricanes. J Atmos Sci 45:1143–1155

    Article  Google Scholar 

  • Emanuel KA, DesAutels C, Holloway C, Korty R (2004) Environmental control of tropical cyclone intensity. J Atmos Sci 61:843–858

    Google Scholar 

  • Errico RM, Bauer P, Mahfouf JF (2007) Issues regarding the assimilation of cloud and precipitation data. J Atmos Sci 64:3785–3798

    Article  Google Scholar 

  • Frank WM, Ritchie EA (1999) Effects of environmental flow upon tropical cyclone structure. Mon Wea Rev 127:2044–2061

    Article  Google Scholar 

  • Frank WM, Ritchie EA (2001) Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon Wea Rev 129:2249–2269

    Article  Google Scholar 

  • Franklin JL, DeMaria M (1992) The impact of omega dropwindsonde observations on barotropic hurricane track forecasts. Mon Wea Rev 120:381–391

    Article  Google Scholar 

  • Franklin JL, Lord SJ, Feuer SE, Marks FD (1993) The kinematic structure of hurricane Gloria (1985) determined from nested analyses of dropwindsonde and Doppler radar data. Mon Wea Rev 121:2433–2451

    Article  Google Scholar 

  • Hou AY, Ledvina DV, Da Silva AM, Zhang SQ, Joiner J, Atlas RM (2000) Assimilation of SSM/I-derived surface rainfall and total precipitatble water for improving the GEOS analysis and climate studies. Mon Wea Rev 128: 509–537

    Article  Google Scholar 

  • Hou AY, Zhang SQ, Reale O (2004) Variational continuous assimilation of TMI and SSM/I rain rates: Impact on GEOS-3 hurricane analyses and forecasts. Mon Wea Rev 132: 2094–2109

    Article  Google Scholar 

  • Houze RA, Chen SS, Lee WC, Rogers RF, Moore JA, Stossmeister GJ, Bell MM, Ceterone J, Zhao W, Brodzik SR (2006) The Hurricane Rainband and intensity change experiment: observations and modeling of Hurricanes Katrina, Ophelia, and Rita. Bull Amer Meteor Soc 87:1503–1521

    Article  Google Scholar 

  • Iwasaki T, Nakano H, Sugi M (1987) The performance of a typhoon track prediction model with cumulus parameterization. J Meteor Soc Japan 65:555–570

    Google Scholar 

  • Jones SC (2000) The evolution of vortices in vertical shear. Part III: Baroclinic vortices. Quart J Roy Meteor Soc 126: 3161–3185

    Article  Google Scholar 

  • Krishnamurti TN, Xue J, Bedi HS, Ingles K, Oosterhof D (1991) Physical initialization for numerical weather prediction over the tropics. Tellus 43:53–81

    Google Scholar 

  • Kurihara Y, Bender MA, Ross RJ (1993) An initialization scheme of hurricane models by vortex specification. Mon Wea Rev 121: 2030–2045

    Article  Google Scholar 

  • Kummerrow C (1993) On the accuracy of the Eddington approximation for radiative transfer in the microwave frequencies. J Geophys Res 98: 2757–2765

    Article  Google Scholar 

  • Kummerrow C, Hong Y, Olson WS, Yang S, Adler RF, McCollum J, Ferraro R, Petty G, Shin DB, Wilheit TT (2001) The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J App Meteor 40:1801–1821

    Article  Google Scholar 

  • Leslie LM, Holland GJ (1995) On the bogussing of tropical cyclones in numerical models: A comparison of vortex profiles. Meteor Atmos Phys 56:101–110

    Article  Google Scholar 

  • Leslie LM, LeMarshall JF, Morison RP, Spinoso C, Purser RJ, Pescod N, Seecamp R (1998) Improved hurricane track forecasting from the continuous assimilation of high quality satellite wind data. Mon Wea Rev 126:1248–1258

    Article  Google Scholar 

  • Liu Q, Weng F (2002) A microwave polarimetric two-stream radiative transfer model. J Atmos Sci 59: 2396–2402

    Article  Google Scholar 

  • Mathur MB (1991) The National Meteorological Center’s quasi- lagrangian model for hurricane prediction. Mon Wea Rev 119:1419–1447

    Article  Google Scholar 

  • McAdie CJ, Lawrence MB (2000) Improvement in tropical cyclone track forecasting in the Atlantic basin, 1970–98. Bull Amer Meteor Soc 81:989–997.

    Article  Google Scholar 

  • McFarquhar GM, Zhang H, Heymsfield G, Hood R, Dudhia J, Halverson JB, Marks F (2006) Factors affecting the evolution of Hurricane Erin (2001) and the distributions of hydrometeors: Role of microphysical processes. J Atmos Sci 63:127–150

    Article  Google Scholar 

  • Meng Z, Chen L, Xu X (2002) Recent progress on tropical cyclone research in China. Adv Atmos Sci 19: 103–110

    Article  Google Scholar 

  • Merrill RT (1988) Environmental influences on hurricane intensification. J Atmos Sci 45:1678–1687

    Article  Google Scholar 

  • Molinari J, Vollaro D (1989) External influences on hurricane intensity. Part I: Outflow layer eddy angular momentum fluxes. J Atmos Sci 46:1093–1105

    Article  Google Scholar 

  • Molinari J, Vollaro D (1990) External influences on hurricane intensity. Part II: Vertical structure and response of the hurricane vortex. J Atmos Sci 47:1902–1918

    Article  Google Scholar 

  • Molinari J, Vollaro D (1995) External influences on hurricane intensity. Part III: Potential vorticity structure. J Atmos Sci 52:3593–3606

    Article  Google Scholar 

  • Paterson LA, Hanstrum BN, Davidson NE, Weber HC (2005) Influence of environmental vertical wind shear on the intensity of hurricane-strength tropical cyclones in the Australian region. Mon Wea Rev 133:3644–3660

    Article  Google Scholar 

  • Pu Z, Braun SA (2001) Evaluation of bogus vortex techniques with four-dimensional variational data assimilation. Mon Wea Rev 129:2023–2039

    Article  Google Scholar 

  • Pu Z, Tao WK, Braun SA, Simpson J, Jia Y, Halverson J, Hou A, Olson W (2002) The impact of TRMM data on mesoscale numerical simulation of supertyphoon Paka. Mon Wea Rev 130:2248–2258

    Article  Google Scholar 

  • Pu Z, Tao WK (2004) Mesoscale assimilation of TMI data with 4DVAR: Sensitivity study. J Meteor Soc Japan 82:1389–1397

    Article  Google Scholar 

  • Pu Z, Li X, Velden C, Aberson S, Liu WT (2008) Impact of aircraft dropsonde and satellite wind data on the numerical simulation of two landfalling tropical storms during TCSP. Wea Forecast 23:62–79

    Article  Google Scholar 

  • Rogers R, Chen S, Tenerelli J, Willoughby H (2003) A numerical study of the impact of vertical shear on the distribution of rainfall in Hurricane Bonnie (1998). Mon Wea Rev 131:1577–1599

    Article  Google Scholar 

  • Rogers R, Aberson S, Black M, Black P, Cione J, Dodge P, Dunion J, Gamache J, Kaplan J, Powell M, Shay N, Surgi N, Uhlhorn E (2006) The intensity forecasting experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bull Amer Meteor Soc 87:1523–1537

    Article  Google Scholar 

  • Soden BJ, Velden CS, Tuleya RE (2001) The impact of satellite winds on experimental GFDL hurricane model forecasts. Mon Wea Rev 129:835–852

    Article  Google Scholar 

  • Spencer RW, Goodman HM, Hood RE (1989) Precipitation retrieval over Land and Ocean with the SSM/I: Identification and characteristics of the scattering signal. J Atmos Ocean Tech 6:254–273

    Article  Google Scholar 

  • Tibbetts RT, Krishnamurti TN (2000) An intercomparison of hurricane forecasts using SSM/I and TRMM rain rate algorithm(s). Meteo Atmos Phys 74:37–49

    Article  Google Scholar 

  • Trinh VT, Krishnamuti TN (1992) Vortex initialization for typhoon track prediction. Meteor Atmos Phys 47:117–126

    Article  Google Scholar 

  • Velden CS, Hayden CM, Franklin JL, Lynch JS (1992) The impact of satellite-derived winds on numerical hurricane track forecasting. Wea Forecast 7:107–118

    Article  Google Scholar 

  • Velden CS, Olander TL, Wanzong S (1998) The impact of multispectral GOES-8 wind information on Atlantic tropical cyclone track forecasts in 1995. Part 1: Dataset methodology, description and case analysis. Mon Wea Rev 126: 1202–1218

    Article  Google Scholar 

  • Weng F (2007) Advances in radiative transfer modeling in support of satellite data assimilation. J Atmos Sci 64: 3799–3807

    Article  Google Scholar 

  • Weng F, Zhu T, Yan B (2007) Satellite data assimilation in numerical weather prediction models. Part II: Uses of rain-affected radiances from microwave observations for hurricane vortex analysis. J Atmos Sci 64: 3910–3925

    Article  Google Scholar 

  • Wu CC, Kuo YH (1999) Typhoons affecting Taiwan: Current understanding and future challenges. Bull Amer Meteor Soc 80: 67–80

    Article  Google Scholar 

  • Wu CC, Chou KH, Lin PH, Aberson S, Peng, MS, Nakazawa T (2007) The impact of dropwindsonde data on typhoon track forecasts in DOTSTAR. Wea Forecast 22:1157–1176

    Google Scholar 

  • Wu L, Braun SA, Qu JJ, Hao X (2006) Simulating the formation of Hurricane Isabel (2003) with AIRS data. Geophys Res Lett 33:L04804

    Article  Google Scholar 

  • Zhang H, Xue J, Zhu G, Zhuang S, Wu X, Zhang F (2004) Application of direct assimilation of ATOVS microwave radiances to typhoon track prediction. Adv Atmos Sci 21:283–290

    Article  Google Scholar 

  • Zhang X, Xiao Q, Fitzpatrick PJ (2007) The impact of multisatellite data on the initialization and simulation of Hurricane Lili’s (2002) rapid weakening phase. Mon Wea Rev 135: 526–548

    Article  Google Scholar 

  • Zhu T, Zhang DL, Weng F (2002) Impact of the advanced microwave sounding unit measurements on hurricane prediction. Mon Wea Rev 130:2416–2432

    Article  Google Scholar 

  • Zhu T, Zhang DL (2006) Numerical simulation of Hurricane Bonnie (1998). Part II: Sensitivity to varying cloud microphysical processes. J Atmos Sci 63: 109–126

    Article  Google Scholar 

  • Zou X, Xiao Q (2000) Studies on the Initialization and simulation of a mature hurricane using a variational bogus data assimilation scheme. J Atmos Sci 57: 836–860

    Article  Google Scholar 

  • Zou X, Xiao Q, Lipton AE, Modica GD (2001) A numerical study of the effect of GOES sounder cloud-cleared brightness temperatures on the prediction on Hurricane Felix. J Appl Meteor 40: 34–55

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pu, Z. (2009). Assimilation of Satellite Data in Improving Numerical Simulation of Tropical Cyclones: Progress, Challenge and Development. In: Park, S.K., Xu, L. (eds) Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71056-1_8

Download citation

Publish with us

Policies and ethics