Skip to main content

Identification of an Experimental Process by B-Spline Neural Network Using Improved Differential Evolution Training

  • Conference paper
Soft Computing in Industrial Applications

Part of the book series: Advances in Soft Computing ((AINSC,volume 39))

Abstract

B-spline neural network (BSNN), a type of basis function neural network, is trained by gradient-based methods, which may fall into local minimum during the learning procedure. To overcome the problems encountered by the conventional learning methods, differential evolution (DE) ( an evolutionary computation methodology ( can provide a stochastic search to adjust the control points of a BSNN are proposed. DE incorporates an efficient way of self-adapting mutation using small populations. The potentialities of DE are its simple structure, easy use, convergence property, quality of solution and robustness. In this paper, we propose a modified DE using chaotic sequence based on logistic map to train a BSNN. The numerical results presented here indicate that the chaotic DE is effective in building a good BSNN model for nonlinear identification of an experimental nonlinear yo-yo motion control system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kuczmann, M., Iványi, A.: Neural network model of magnetic hysteresis. COMPEL: The Int. J. Computation and Math. in Electrical and Electronic Eng. 21(3), 364–376 (2002)

    Article  MATH  Google Scholar 

  2. Tan, Y., et al.: Dynamic wavelet neural network for nonlinear dynamic system identification. In: Proceedings of the IEEE Int. Conf. on Control Applications, Anchorage, AL, USA, pp. 214–219. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  3. Mcloone, S., et al.: A hybrid linear/nonlinear training algorithm for feedforward neural networks. IEEE Trans. on Neural Networks 9(4), 669–684 (1998)

    Article  Google Scholar 

  4. Newmann, W.M., Sproull, R.F.: Principles of Interactive Computer Graphics. McGraw-Hill, New York (1979)

    Google Scholar 

  5. Starrenburg, G., et al.: Learning feedforward controller for a mobile robot vehicle. Control Eng. Practice 4(9), 1221–1230 (1996)

    Article  Google Scholar 

  6. Zhang, J., Knoll, A.: Designing fuzzy controllers by rapid learning. Fuzzy Sets and Systems 101, 287–301 (1999)

    Article  MATH  Google Scholar 

  7. Yiu, K.F.C., et al.: Nonlinear system modeling via knot-optimizing B-spline networks. IEEE Transactions on Neural Networks 12(4), 1013–1022 (2001)

    Google Scholar 

  8. Saranli, A., Baykal, B.: Complexity reduction in radial basis function (RBF) networks by using radial B-spline functions. Neurocomputing 18, 183–194 (1998)

    Article  Google Scholar 

  9. Shimojima, K., Fukuda, T., Arai, F.: Self-tuning fuzzy inference based on spline function. In: Proceedings of IEEE Int. Conference on Fuzzy Systems, Orlando, FL, USA, pp. 690–695. IEEE Computer Society Press, Los Alamitos (1994)

    Chapter  Google Scholar 

  10. Chu, V.K., Tomizuka, M.: Rule generation for fuzzy systems based on B-splines. In: Proceedings of IEEE Int. Conference on Neural Networks, Perth, Australia, pp. 6098–6611. IEEE, Los Alamitos (1995)

    Google Scholar 

  11. Haykin, S.: Neural Networks, 2nd edn. Prentice-Hall, Upper Saddle River (1996)

    Google Scholar 

  12. Storn, R., Price, K.: Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. TR-95-012, Int. Computer Science Inst., Berkeley (1995)

    Google Scholar 

  13. Storn, R.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Parker, T.S., Chua, L.O.: Practical numerical algorithms for chaotic system. Springer, Berlin (1989)

    Google Scholar 

  15. Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos: an Introduction to Dynamical Systems. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  16. Coelho, L.S., Mariani, V.C.: Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect. IEEE Transactions on Power Systems 21(2), 989–996 (2006)

    Article  Google Scholar 

  17. Shengsong, L., Min, W., Zhijian, H.: Hybrid algorithm of chaos optimisation and SLP for optimal power flow problems with multimodal characteristic. IEE Proceedings in Generation, Transmission, and Distribution 150(5), 543–547 (2003)

    Article  Google Scholar 

  18. Li, B., Jiang, W.: Optimizing complex functions by chaos search. Cybernetics and Systems 29(4), 409–419 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Yan, X.F., Chen, D.Z., Hu, S.X.: Chaos-genetic algorithm for optimizing the operating conditions based on RBF-PLS model. Computers and Chemical Eng. 27, 1393–1404

    Google Scholar 

  20. Jin, H.-L., Zacksenhouse, M.: Oscillatory neural networks for robotic yo-yo control. IEEE Transactions on Neural Networks 14(2), 317–325 (2003)

    Article  Google Scholar 

  21. Zlajpah, L., Nemec, B.: Control strategy for robotic yo-yo. In: Proceedings of the IEEE/RSJ Int. Conference on Intelligent Robots and Systems, Las Vegas, Nevada, USA, pp. 767–772. IEEE, Los Alamitos (2003)

    Google Scholar 

  22. Hashimoto, K., Toshiro, N.: Modeling and control of robotic yoyo with visual feedback. In: IEEE International Conference on Robotics and Automation, vol. 3, Minneapolis, Minnesota, USA, pp. 2650–2655. IEEE, Los Alamitos (1996)

    Google Scholar 

  23. Herrera, B.M., Ribas, L.V., Coelho, L.S.: Nonlinear identification method of a yo-yo system using fuzzy model and fast particle swarm optimization. In: 9th World Conference on Soft Computing in Industrial Applications (2005), [Online], Available: http://www.cs.nmt.edu/~wsc9/

  24. Schaible, B., Xie, H., Lee, Y.C.: Fuzzy logic models for ranking process effects. IEEE Transactions on Fuzzy Systems 5(4), 545–556 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ashraf Saad Keshav Dahal Muhammad Sarfraz Rajkumar Roy

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

dos Santos Coelho, L., Guerra, F.A. (2007). Identification of an Experimental Process by B-Spline Neural Network Using Improved Differential Evolution Training. In: Saad, A., Dahal, K., Sarfraz, M., Roy, R. (eds) Soft Computing in Industrial Applications. Advances in Soft Computing, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70706-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70706-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70704-2

  • Online ISBN: 978-3-540-70706-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics