Skip to main content

Hybrid Dynamic Systems in an Industry Design Application

  • Conference paper
Soft Computing in Industrial Applications

Part of the book series: Advances in Soft Computing ((AINSC,volume 39))

  • 984 Accesses

Abstract

The term hybrid dynamic system is a term for a mathematical system that combines behavior of a continuous nature with discontinuous changes. Such systems are often formed by the underlying computational representation of models used in the design of control and signal processing applications, for example in the automotive and aerospace industries. This paper outlines the benefits of Model-Based Design and illustrates how many different formalisms may be essential in model elaboration, such as time-based block diagrams, state transition diagrams, entity-flow networks, and multi-body diagrams. The basic elements of the underlying hybrid dynamic system computational representation are presented and it is shown how these elements combine to form different classes of behaviors that need to be handled for simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barnard, P.: Graphical techniques for aircraft dynamic model development (CD-ROM). In: AIAA Modeling and Simulation Technologies Conference and Exhibit, Providence, Rhode Island, August (2004)

    Google Scholar 

  2. Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.): HSCC 2001. LNCS, vol. 2034. Springer, Heidelberg (2001)

    Google Scholar 

  3. Brown, R.: Calendar queues: A fast 0(1) priority queue implementation for the simulation event set problem. Communications of the ACM 31(10), 1220–1227 (1988)

    Article  Google Scholar 

  4. CAN specification. Technical Report, Robert Bosch GmbH (1991)

    Google Scholar 

  5. Cellier, F.E., Elmqvist, H., Otter, M.: Modelling from physical principles. In: Levine, W.S. (ed.) The Control Handbook, pp. 99–107. CRC Press, Boca Raton (1996)

    Google Scholar 

  6. Guckenheimer, J., Johnson, S.: Planar hybrid systems. In: Antsaklis, P.J., et al. (eds.) Hybrid Systems II. LNCS, vol. 999, pp. 202–225. Springer, Heidelberg (1995)

    Google Scholar 

  7. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Computer Programming 8, 231–274 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Karnopp, D.C., Margolis, D.L., Rosenberg, R.C.: Systems Dynamics: A Unified Approach, 2nd edn. John Wiley and Sons, Chichester (1990)

    Google Scholar 

  9. Kohavi, Z.: Switching and Finite Automata Theory. McGraw-Hill, New York (1978)

    MATH  Google Scholar 

  10. Lynch, N.A., Krogh, B.H. (eds.): HSCC 2000. LNCS, vol. 1790. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  11. Mosterman, P.J.: An overview of hybrid simulation phe- nomena and their support by simulation packages. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 164–177. Springer, Heidelberg (1999)

    Google Scholar 

  12. Mosterman, P.J.: HyBrSim – a modeling and simulation environment for hybrid bond graphs. Journal of Systems and Control Engineering, special issue paper 216, 35–46 (2002)

    Google Scholar 

  13. Mosterman, P.J.: Mode transition behavior in hybrid dynamic systems. In: Proceedings of the 2003 Winter Simulation Conference, invited paper, New Orleans, LA, December, pp. 623–631 (2003)

    Google Scholar 

  14. Mosterman, P.J.: Hybrid dynamic systems: Modeling and execution. In: Fishwick, P.A. (ed.) Handbook of Dynamic System Modeling, pp. 15-1-15-23. CRC Press, Boca Raton (2007)

    Google Scholar 

  15. Mosterman, P.J., Biswas, G.: A hybrid modeling and simulation methodology for dynamic physical systems. SIMULATION: Transactions of The Society for Modeling and Simulation International 178(1), 5–17 (2002)

    Article  Google Scholar 

  16. Mosterman, P.J., Zhao, F., Biswas, G.: An ontology for transitions in physical dynamic systems. In: AAAI98, July, pp. 219–224 (1998)

    Google Scholar 

  17. SimEvents. SimEvents User’s Guide. The MathWorks, Natick, MA (March 2006)

    Google Scholar 

  18. SimMechanics. SimMechanics User’s Guide. The MathWorks, Natick, MA (March 2006)

    Google Scholar 

  19. SimPowerSystems. SimPowerSystems User’s Guide. The MathWorks, Natick, MA (March 2006)

    Google Scholar 

  20. Simulink. Using Simulink. The MathWorks, Inc., Natick, MA, March 2006.

    Google Scholar 

  21. SolidWorks. Introducing SolidWorks. SolidWorks Corporation, Concord, MA (2002)

    Google Scholar 

  22. Stateflow. Stateflow User’s Guide. The MathWorks, Natick, MA (March 2006)

    Google Scholar 

  23. Vaandrager, F.W., van Schuppen, J.H. (eds.): HSCC 1999. LNCS, vol. 1569. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  24. Verghese, G.C., Lévy, B.C., Kailath, T.: A generalized state-space for singular systems. IEEE Transactions on Automatic Control 26(4), 811–831 (1981)

    Article  MATH  Google Scholar 

  25. Wood, G.D., Kennedy, D.C.: Simulating mechanical systems in simulink with simmechanics. Technical Report 91124v00, The MathWorks, Inc., Natick, MA (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ashraf Saad Keshav Dahal Muhammad Sarfraz Rajkumar Roy

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mosterman, P.J., O’Brien, E.M. (2007). Hybrid Dynamic Systems in an Industry Design Application. In: Saad, A., Dahal, K., Sarfraz, M., Roy, R. (eds) Soft Computing in Industrial Applications. Advances in Soft Computing, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70706-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70706-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70704-2

  • Online ISBN: 978-3-540-70706-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics