Skip to main content

The Physical Dynamics of the River–Lake Floodplain System

  • Chapter
The Middle Paraná River

Abstract

The Paraná River is the second largest river in South America in terms of catchment area (1.51 million km2), the second longest (4,400 km from the headwaters of Grande River in Brazil to the Río de la Plata estuary), and the third in terms of discharge (about 470 km3 of freshwater carried to the sea annually). Within this fluvial hydrosystem, the segment of the Middle Paraná encompasses 700 km upstream from the Paraguay outlet to the apex of the delta upstream from Rosario city (Santa Fe Province, Argentina) (Chap. 1, Fig. 1.5). Along its main channel, the Middle Paraná has built a relatively wide fringing floodplain with a surface of ca. 20,000 km2. This floodplain resembles other large tropical and temperate floodplains in its amplitude and duration of flooding, and in many of its ecological characteristics. The annual phases of flood and drought and the complex hydrological connectivity between lotic and lentic waters are the major variables driving the lateral and longitudinal exchanges of sediments, organic matter and organisms at the riverscape scale. Moreover, the hydrology of the floodplain lakes, as well as the sedimentation- resuspension processes, the thermal behavior and the heat content variations are closely linked with the flood and drought phases. The aim of this chapter is to extend the knowledge on the hydro-sedimentological dynamics, as well as the thermal structures and mixing processes that occur in the river–floodplain lake systems of the Middle Paraná during the annual connection and disconnection phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan JD (1995) Stream ecology: structure and function of running waters. Chapman & Hall, London.

    Book  Google Scholar 

  • Barko JW, Hardin DG, Matthews MS (1982) Growth and morphology of submersed freshwater macrophytes in relation to light and temperature. Can J Bot 60:877–887.

    Article  Google Scholar 

  • Beach Erosion Board (1972) Waves in inland reservoirs. US Army Corps Eng, Beach Erosion Board Tech Memo 132.

    Google Scholar 

  • Birge EA (1915) The heat budgets of American and European lakes. Trans Wis Acad Sci Arts Lett 18:166–213.

    Google Scholar 

  • Bloesch J, Burns NM (1980) A critical review of sedimentation trap technique. Schweiz Z Hydrol 42:15–55.

    Google Scholar 

  • Bonetto C, Zalocar Y, Lancelle H (1984) A limnological study of an oxbow lake covered by Eichhornia crassipes in the Paraná River. Verh Internat Verein Limnol 22:1315–1318.

    CAS  Google Scholar 

  • Bowes G, Van T, Garrard L, Haller W (1977) Adaptation to low light levels by Hydrilla. J Aquat Plant Manage 15:32–35.

    CAS  Google Scholar 

  • Carper GL, Bachmann RW (1984) Wind resuspension of sediments in a prairie lake. Can J Fish Aquat Sci 41:1763–1767.

    Article  Google Scholar 

  • Chambers PA, Kalff J (1985) Depth distribution and biomass of submersed aquatic macrophyte communities in relation to Secchi depth. Can J Fish Aquat Sci 42:701–709.

    Article  Google Scholar 

  • Coche AG (1974) Limnological study of a tropical reservoir. In: Balon EK, Coche AG (eds) Lake Kariba: a man-made tropical ecosystem in Central Africa. Junk Publishers, The Hague, pp 1–247.

    Google Scholar 

  • Crisp DT, Matthews AM, Westeake DF (1982) The temperatures of nine flowing waters in southern England. Hydrobiologia 89:193–204.

    Article  Google Scholar 

  • Cristina I (2006) Evolución de los niveles del río Paraná. Centro de Informaciones Meteorológicas, Facultad de Hidrología y Ciencias Hídricas, Universidad Nacional del Litoral, Santa Fe, Argentina.

    Google Scholar 

  • Dale HM, Gillespie T (1976) The influence of floating vascular plants on the diurnal fluctuations of temperature near the water surface in early spring. Hydrobiologia 49:245–256.

    Article  Google Scholar 

  • Dale HM, Gillespie T (1977) Diurnal fluctuations of temperature near the bottom of shallow water bodies as affected by solar radiation, bottom color and water circulation. Hydrobiologia 55:87–92.

    Article  Google Scholar 

  • Drago EC (1976) Origen y clasificación de ambientes leníticos en llanuras aluviales. Rev Asoc Cienc Nat Litoral 7:123–137.

    Google Scholar 

  • Drago EC (1980) Aspectos limnológicos en ambientes próximos a la ciudad de Santa Fe (Paraná Medio): Comportamiento hidrológico y sólidos suspendidos. Ecología (Argentina) 5:31–48.

    Google Scholar 

  • Drago EC (1981) Grados de conexión y fases hidrológicas en ambientes leníticos de la llanura aluvial del río Paraná (Argentina). Ecología (Argentina) 6:27–33.

    Google Scholar 

  • Drago EC (1984) Estudios limnológicos en una sección transversal del tramo medio del río Paraná. VI: Temperatura del agua. Rev Asoc Cienc Nat Litoral 15:79–82.

    Google Scholar 

  • Drago EC (1989) Morphological and hydrological characteristics of the floodplain ponds of the Middle Paraná River (Argentina). Rev Hydrobiol Trop 22:183–190.

    Google Scholar 

  • Drago EC (1990) Geomorphology of large alluvial rivers: Lower Paraguay and Middle Paraná. Interciencia 15:378–387.

    Google Scholar 

  • Drago EC, Vassallo M (1980) Campaña limnológica “Keratella I” en el río Paraná Medio: Características físicas y químicas del río y ambientes leníticos asociados. Ecología Argentina 4:45–54.

    Google Scholar 

  • Drago EC, Paira AR (1987) Temperature and heat budget in a floodplain pond of the Middle Paraná River (Argentina). Rev Asoc Cienc Nat Litoral 12:193–201.

    Google Scholar 

  • Drago EC, Amsler ML (1988) Suspended sediment at a cross section of the Middle Paraná River: concentration, granulometry and influence of the main tributaries. IAHS Publ 174:381–396.

    Google Scholar 

  • Drago EC, Amsler ML (1998) Bed sediment characteristics in the Paraná and Paraguay rivers. Water Int 23:174–183.

    Article  Google Scholar 

  • Drago EC, Ezcurra de Drago I, Oliveros OB, Paira AR (2003) Aquatic habitats, fishes and invertebrate assemblages of the Middle Paraná River. Amazoniana 17:291–341.

    Google Scholar 

  • FICH (Facultad de Ingeniería y Ciencias Hídricas) 1991a. Informe de diagnóstico sobre navegación en la ruta Rosario–Océano. El río Paraná Inferior, Convenio: Universidad Nacional del Litoral–Instituto Nacional de Ciencia y Técnicas Hídricas, Santa Fe, Argentina.

    Google Scholar 

  • Froehlich CG, Arcifa-Zago MS, de Carvalho MA (1978) Temperature and oxygen stratification in Americana Reservoir, State of Sao Paulo, Brazil. Verh Internat Verein Limnol 20:1710–1719.

    Google Scholar 

  • Gardner WD (1980a) Sediment trap dynamics and calibration: a laboratory evaluation. J Mar Res 38:17–39.

    Google Scholar 

  • Gardner WD (1980b) Field assessment of sediment traps. J Mar Res 38:41–52.

    Google Scholar 

  • Gorham E (1964) Morphometric control of annual heat budgets in temperate lakes. Limnol Oceanogr 9:525–529.

    Article  Google Scholar 

  • Häkanson L (1981) A manual of lake morphometry. Springer, Berlin Heidelberg New York.

    Book  Google Scholar 

  • Hamilton SK, Lewis WM Jr (1987) Causes of seasonality in the chemistry of a lake on the Orinoco River floodplain, Venezuela. Limnol Oceanogr 32:1277–1290.

    Article  CAS  Google Scholar 

  • Hamilton SK, Lewis WM Jr (1990a) Basin morphology in relation to chemical and ecological characteristics of lakes on the Orinoco River floodplain, Venezuela. Arch Hydrobiol 119:393–425.

    CAS  Google Scholar 

  • Hamilton SK, Lewis WM Jr (1990b) Physical characteristics of the fringing floodplain of the Orinoco River, Venezuela. Interciencia 15:491–500.

    Google Scholar 

  • Hamilton SK, Sippel SJ, Lewis WM Jr, Saunders JF III (1990) Zooplankton abundance and evidence for its reduction by macrophytes mats in two Orinoco floodplain lakes. J Plankton Res 12:345–363.

    Article  Google Scholar 

  • Heide van der J (1982) Lake Brokopondo. Filling phase limnology of a man-made lake in the humid tropics. Offsetdrukkerij Kanters B.V., Alblasserdam.

    Google Scholar 

  • Henry R, Barbosa FA (1989) Thermal structure, heat content and stability of two lakes on the National Park of Rio Doce Valley (Minas Gerais, Brazil). Hydrobiologia 171:189–199.

    Article  Google Scholar 

  • Hutchinson E (1957) A treatise on Limnology. I. Geography, physics and chemistry. Wiley, New York.

    Google Scholar 

  • Idso SB (1973) On the concept of lake stability. Limnol Oceanogr 18:681–683.

    Article  Google Scholar 

  • Iriondo MH (1988) A comparison between the Amazon and Parana´ River systems. Mitt Geol Pala¨ont Inst Univ Hamburg SCOPE/UNEP Sonderband 66:77–92.

    Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. In: Dodge DP (ed) Proceedings of the International Large River Symposium. Can Fish Aquat Sci Spec Publ 106:110–127.

    Google Scholar 

  • Jupp BP, Spence DH (1977) Limitations on macrophytes in an eutrophic lake, Loch Leven. II. Wave action, sediments and water fowl grazing. J Ecol 65:431–446.

    Article  CAS  Google Scholar 

  • Köeppen W (1948) Climatología. Fondo de Cultura Económica, México.

    Google Scholar 

  • Lallana V, Sabattini R, Lallana M (1987) Evapotranspiration from Eichhornia crassipes, Pistia stratiotes, Salvinia hersoggi and Azolla caroliniana during summer in Argentina. J Aquat Plant Manage 25:48–50.

    Google Scholar 

  • Lewis WM Jr (1973) The thermal regime of lake Lanao (Philippines) and its theoretical implications for tropical lakes. Limnol Oceanogr 18:200–217.

    Article  Google Scholar 

  • Lewis WM Jr (1983a) Temperature, heat and mixing in lake Valencia, Venezuela. Limnol Oceanogr 28:273–286.

    Article  Google Scholar 

  • Lewis WM Jr (1983b) A revised classification of lakes based on mixing. Can J Fish Aquat Sci 40:1779–1787.

    Article  Google Scholar 

  • Lewis WM Jr (1984) A five-year record of temperature, mixing, and stability for a tropical lakes (Lake Valencia, Venezuela). Arch Hydrobiol 99:340–346.

    Google Scholar 

  • Lewis WM Jr, Weibezahn FH, Saunders III JF, Hamilton SK (1990) The Orinoco River as an ecological system. Interciencia 15:346–357.

    Google Scholar 

  • MacIntyre S, Melack JM (1984) Vertical mixing in Amazon floodplain lakes. Verh Internat Verein Limnol 22:1283–1287.

    Google Scholar 

  • MacIntyre S, Melack JM (1988) Frequency and depth of vertical mixing in an Amazon floodplain lake (L. Calado, Brazil). Verh Internat Verein Limnol 23:80–85.

    Google Scholar 

  • Martin NA (1972) Temperature fluctuations within English lowland ponds. Hydrobiologia 40:455–469.

    Article  Google Scholar 

  • Melack JM (1984) Amazon floodplain lakes: shape, fetch, and stratification. Verh Internat Verein Limnol 22:1278–1282.

    Google Scholar 

  • Melack JM, Fisher TR (1983) Diel oxygen variation and their ecological implications in Amazon floodplain lakes. Arch Hydrobiol 98:422–442.

    Google Scholar 

  • Melack JM, Fisher TR (1990) Comparative limnology of tropical floodplain lakes with an emphasis on the central Amazon. Acta Limnol Brasil 3:1–48.

    Google Scholar 

  • Mertes LA (1997) Documentation and significance of the perirheic zone on inundated floodplains. Water Resour Res 33:1749–1762.

    Article  Google Scholar 

  • Paira AR, Drago EC (2006) Genetical, morphological and evolutional relationships of the floodplain lakes in the Middle Paraná River Hydrosystem. Zeitschrift für Geomorphologie 145:207–228.

    Google Scholar 

  • Paoli C, Cacik P (2000) Régimen de crecidas y análisis de caudales máximos. In: Paoli C, Schreider M (eds) El Río Paraná, tomo 1, chapter 3. Universidad Nacional del Litoral, Centro de Publicaciones, Santa Fe, Argentina, pp 105–171.

    Google Scholar 

  • Sioli H (1984) Former and recent utilizations of Amazonia and their impact on the environment. In: Sioli H (ed) The Amazon: limnology and landscape ecology of a mighty tropical river and its basin. Junk Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Sippel SJ, Hamilton SK, Melack JM (1992) Inundation area and morphometry of lakes on the Amazon River floodplain, Brazil. Arch Hydrobiol 123:385–400.

    Google Scholar 

  • Smith IR (1975) Water temperature variations within a major river system. Nordic Hydrol 6:155–169.

    Google Scholar 

  • Smith IR (1979) Hydraulic conditions in isothermal lakes. Freshwater Biol 9:119–145.

    Article  Google Scholar 

  • Smith IR, Sinclair IJ (1972) Deep water waves in lakes. Freshwater Biol 2:387–399.

    Article  Google Scholar 

  • Spence DH (1982) The zonation of plants in freshwater lakes. Adv Ecol Res 12:37–125.

    Article  Google Scholar 

  • Strahler AN (1957) Quantitative analysis of watershed geomorphology. Trans Am Geophys Union 38:913–920.

    Article  Google Scholar 

  • Timms BV (1975) Morphometric control of variations in annual heat budgets. Limol Oceanogr 20:110–112.

    Article  Google Scholar 

  • Tockner K, Malard F, Ward JV (2000) An extension of the flood pulse concept. Hydrol Process 14:2861–2883.

    Article  Google Scholar 

  • Vannote RL, Sweeney BW (1980) Geographic analysis of thermal equilibria: a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. Am Nat 112:667–695.

    Article  Google Scholar 

  • Vásquez E (1992) Temperature and dissolved oxygen in lakes of the Lower Orinoco River floodplain (Venezuela). Rev Hydrobiol trop 25:23–33.

    Google Scholar 

  • Walker JH, Lawson JD (1977) Natural stream temperature variations in a catchment. Water Res 11:373–377.

    Article  Google Scholar 

  • Ward JV (1985) Thermal characteristics of running waters. Hydrobiologia 125:31–46.

    Article  Google Scholar 

  • Wood RB, Prosser MV, Baxter RM (1976) The seasonal pattern of thermal characteristics of four of the Bishoftu crater lakes, Ethiopia. Freshwater Biol 6:519–530.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Drago, E.C. (2007). The Physical Dynamics of the River–Lake Floodplain System. In: Iriondo, M.H., Paggi, J.C., Parma, M.J. (eds) The Middle Paraná River. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70624-3_4

Download citation

Publish with us

Policies and ethics