Skip to main content

Making It to the Synapse: Measles Virus Spread in and Among Neurons

  • Chapter
Measles

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 330))

Measles virus (MV) is one of the most transmissible microorganisms known, continuing to result in extensive morbidity and mortality worldwide. While rare, MV can infect the human central nervous system, triggering fatal CNS diseases weeks to years after exposure. The advent of crucial laboratory tools to dissect MV neuropathogenesis, including permissive transgenic mouse models, the capacity to manipulate the viral genome using reverse genetics, and cell biology advances in understanding the processes that govern intracellular trafficking of viral components, have substantially clarified how MV infects, spreads, and persists in this unique cell population. This review highlights some of these technical advances, followed by a discussion of our present understanding of MV neuronal infection and transport. Because some of these processes may be shared among diverse viruses, comparisons are made to parallel studies with other neurotropic viruses. While a crystallized view of how the unique environment of the neuron affects MV replication, spread, and, ultimately, neuropatho-genesis is not fully realized, the tools and ideas are in place for exciting advances in the coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad FJ, Echeverri CJ, Vallee RB, Baas PW (1998) Cytoplasmic dynein and dynactin are required for the transport of microtubules into the axon. J Cell Biol 140:391–401

    Article  PubMed  CAS  Google Scholar 

  • Ahmad-Annuar A, Shah P, Hafezparast M, Hummerich H, Witherden AS, Morrison KE, Shaw PJ, Kirby J, Warner TT, Crosby A, Proukakis C, Wilkinson P, Orrell RW, Bradley L, Martin JE, Fisher EMC (2003) No association with common Caucasian genotypes in exons 8, 13 and 14 of the human cytoplasmic dynein heavy chain gene (DNCHC1) and familial motor neuron disorders. Amyotrophic Lateral Scler Other Motor Neuron Disord 4:150–157

    Article  CAS  Google Scholar 

  • Albrecht P, Burnstein T, Klutch MJ, Hicks HT, Ennis FA (1977) Subacute sclerosing panencepha-litis: experimental infection in primates. Science 195:64–66

    Article  PubMed  CAS  Google Scholar 

  • Allen I V, McQuaid S, McMahon J, Kirk J, McConnell R (1996) The significance of measles virus antigen and genome distribution in the CNS in SSPE for mechanisms of viral spread and demyelination. J Neuropathol Exp Neurol 55:471–480

    Article  PubMed  CAS  Google Scholar 

  • Andres O, Obojes K, Kim KS, ter Meulen V, Schneider-Schaulies J (2003) CD46- and CD150-independent endothelial cell infection with wild-type measles viruses. J Gen Virol 84:1189–1197

    Article  PubMed  CAS  Google Scholar 

  • Atabani S, Byrnes A, Jaye A, Kidd IM, Magnusen A, Whittle H, Karp C (2001) Natural measles causes prolonged suppression of Interleukin-12 production. J Infect Dis 184:1–9

    Article  PubMed  CAS  Google Scholar 

  • Baczko K, Liebert UG, Cattaneo R, Billeter MA, Roos RP, ter Meulen, V (1988) Restriction of measles virus gene expression in measles inclusion body encephalitis. J Infect Dis 158:144–150

    PubMed  CAS  Google Scholar 

  • Bearer EL, Breakefield XO, Schuback D, Reese TS, LaVail JH (2000) Retrograde axonal transport of herpes simplex virus: evidence for a single mechanism and a role for tegument. Proc NatlAcad Sci U S A 97:8146–8150

    Article  CAS  Google Scholar 

  • Billeter MA, Cattaneo R, Spielhofer P, Kaelin K, Huber M, Schmid A, Baczko K, ter Meulen V (1994) Generation and properties of measles virus mutations typically associated with suba-cute sclerosing panencephalitis. Ann N Y Acad Sci 724:367–377

    Article  PubMed  CAS  Google Scholar 

  • Bitnun A, Shannon P, Durward A, Rota PA, Bellini WJ, Graham C, Wang E, Ford-Jones EL, Cox P, Becker L, Fearon M, Petric M, Tellier R (1999) Measles inclusion-body encephalitis caused by the vaccine strain of measles virus. Clin Infect Dis 29:855–861

    Article  PubMed  CAS  Google Scholar 

  • Blau DM, Compans RW (1995) Entry and release of measles virus are polarized in epithelial cells. Virology 210:91–99

    Article  PubMed  CAS  Google Scholar 

  • Blixenkrone-Moller M, Bernard A, Bencsik A, Sixt N, Diamond LE, Logan JS, Wild TF (1998)Role of CD46 in measles virus infection in CD46 transgenic mice. Virology 249:238–248

    Article  PubMed  CAS  Google Scholar 

  • Bohn W, Rutter G, Hohenberg H, Mannweiler K, Nobis P (1986) Involvement of actin filaments in budding of measles virus: studies on cytoskeletons of infected cells. Virology 149: 91–106

    Article  PubMed  CAS  Google Scholar 

  • Bonami F, Rudd PA, von Messling V (2007) Disease duration determines canine distemper virus neurovirulence. J Virol 81:12066–12070

    Article  PubMed  CAS  Google Scholar 

  • Brown HR, Thormar H, Barshatzky M, Wisniewski HM (1985) Localization of measles virus antigens in subacute sclerosing panencephalitis in ferrets. Lab Anim Sci 35:233–237

    PubMed  CAS  Google Scholar 

  • Brown HR, Goller NL, Thormar H, Rudelli R, Tourtellotte WW, Shapshak P, Boostanfar R, Wisniewski HM (1987) Measles virus matrix protein gene expression in a subacute sclerosing panencephalitis patient brain and virus isolate demonstrated by cDNA hybridization and immunocytochemistry. Acta Neuropathol 75:123–130

    Article  PubMed  CAS  Google Scholar 

  • Burkhardt JK, Echeverri CJ, Nilsson T, Vallee RB (1997) Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J Cell Biol 139:469–484

    Article  PubMed  CAS  Google Scholar 

  • Carsillo T, Traylor Z, Choi C, Niewiesk S, Oglesbee M (2006) hsp72, a host determinant of measles virus neurovirulence. J Virol 80:11031–11039

    Article  PubMed  CAS  Google Scholar 

  • Castro AE, Burnstein T, Byington DP (1972) Properties in cell culture of a hamster brain-adapted subacute sclerosing panencephalitis virus. J Gen Virol 16:413–417

    Article  PubMed  CAS  Google Scholar 

  • Cathomen T, Mrkic B, Spehner D, Drillien R, Naef R, Pavlovic J, Aguzzi A, Billeter MA, Cattaneo R (1998a) A matrix-less measles virus is infectious and elicits extensive cell fusion: consequences for propagation in the brain. EMBO J 17:3899–3908

    Article  CAS  Google Scholar 

  • Cathomen T, Naim H Y, Cattaneo R (1998b) Measles viruses with altered envelope protein cyto-plasmic tails gain cell fusion competence. J Virol 72:1224–1234

    CAS  Google Scholar 

  • Cattaneo R, Rebmann G, Baczko K, ter Meulen V, Billeter MA (1987a) Altered ratios of measles virus transcripts in diseased human brains. Virology 160:523–526

    Article  CAS  Google Scholar 

  • Cattaneo R, Rebmann G, Schmid A, Baczko K, ter Meulen V, Billeter MA (1987b) Altered transcription of a defective measles virus genome derived from a diseased human brain. EMBO J 6:681–688

    CAS  Google Scholar 

  • Cattaneo R, Schmid A, Eschle D, Baczko K, ter Meulen V, Billeter MA (1988) Biased hypermutation and other genetic changes in defective measles viruses in human brain infections. Cell 55:255–265

    Article  PubMed  CAS  Google Scholar 

  • Colf LA, Juo ZS, Garcia KC (2007) Structure of the measles virus hemagglutinin. Nat Struct Mol Biol 14:1227–1228

    Article  PubMed  CAS  Google Scholar 

  • Coovadia HM, Wesley A, Henderson LG, Brain P, Vos GH, Hallett AF (1978) Alterations in immune responsiveness in acute measles and chronic post-measles chest disease. Int Arch Allergy Appl Immunol 56:14–23

    PubMed  CAS  Google Scholar 

  • de Swart RL, Ludlow M, deWitte L, Yanagi Y, van Amerongen G, McQuaid S, Yuksel S, Geijtenbeek TBH, Duprex WP, Osterhaus ADME (2007) Predominant infection of CD150 (+) lymphocytes and dendritic cells during measles virus infection of macaques. PLoS Pathog 3:l771

    Article  CAS  Google Scholar 

  • Devaux P, von Messling V, Songsungthong W, Springfeld C, Cattaneo R (2007) Tyrosine 110 in the measles virus phosphoprotein is required to block STAT1 phosphorylation. Virology 360:72–83

    Article  PubMed  CAS  Google Scholar 

  • Dhib-Jalbut S, Johnson KP (1994) Measles virus diseases. In: McKendall RR, Stroop WG (eds) Handbook of neurovirology. Marcel Dekker, New York, pp 539–554

    Google Scholar 

  • Diefenbach RJ, Miranda-Saksena M, Douglas MW, Cunningham AL (2008) Transport and egress of herpes simplex virus in neurons. Rev Med Virol 18:35–51

    Article  PubMed  Google Scholar 

  • Dohner K, Wolfstein A, Prank U, Echeverri C, Dujardin D, Vallee R, Sodeik B (2002) Function of dynein and dynactin in herpes simplex virus capsid transport. Mol Biol Cell 13:2795–2809

    Article  PubMed  CAS  Google Scholar 

  • Dorig RE, Marcil A, Chopra A, Richardson CD (1993) The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75:295–305

    Article  PubMed  CAS  Google Scholar 

  • Dubois-Dalcq M, Coblentz JM, Pleet AB (1974) Subacute sclerosing panencephalitis. Unusual nuclear inclusions and lengthy clinical course. Arch Neurol 31:355–363

    PubMed  CAS  Google Scholar 

  • Duprex WP, Duffy I, McQuaid S, Hamill L, Cosby SL, Billeter MA, Schneider-Schaulies J, ter Meulen V, Rima BK (1999a) The H gene of rodent brain-adapted measles virus confers neu-rovirulence to the Edmonston vaccine strain. J Virol 73:6916–6922

    CAS  Google Scholar 

  • Duprex WP, McQuaid S, Hangartner L, Billeter MA, Rima BK (1999b) Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus. J Virol 73:9568–9575

    CAS  Google Scholar 

  • Duprex WP, McQuaid S, Roscic-Mrkic B, Cattaneo R, McCallister C, Rima BK (2000) In vitro and in vivo infection of neural cells by a recombinant measles virus expressing enhanced green fluorescent protein. J Virol 74:7972–7979

    Article  PubMed  CAS  Google Scholar 

  • Echeverri CJ, Paschal BM, Vaughan KT, Vallee RB (1996) Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J Cell Biol 132:617–633

    Article  PubMed  CAS  Google Scholar 

  • Ehrengruber MU, Ehler E, Billeter MA, Naim HY (2002) Measles virus spreads in rat hippocam-pal neurons by cell-to-cell contact and in a polarized fashion. J Virol 76:5720–5728

    Article  PubMed  CAS  Google Scholar 

  • Erlenhoefer C, Wurzer WJ, Loffler S, Schneider-Schaulies S, ter Meulen V, Schneider-Schaulies J (2001) CD150 (SLAM) is a receptor for measles virus but is not involved in viral contact-mediated proliferation inhibition. J Virol 75:4499–4505

    Article  PubMed  CAS  Google Scholar 

  • Erlenhofer C, Duprex WP, Rima BK, ter Meulen V, Schneider-Schaulies J (2002) Analysis of receptor (CD46, CD150) usage by measles virus. J Gen Virol 83:1431–1436

    PubMed  CAS  Google Scholar 

  • Esolen LM, Takahashi K, Johnson RT, Vaisberg A, Moench TR, Wesselingh SL, Griffin DE (1995) Brain endothelial cell infection in children with acute fatal measles. J Clin Invest 96:2478–2481

    Article  PubMed  CAS  Google Scholar 

  • Evlashev A, Moyse E, Valentin H, Azocar O, Trescol-Biemont MC, Marie JC, Rabourdin-Combe C, Horvat B (2000) Productive measles virus brain infection and apoptosis in CD46 transgenic mice. J Virol 74:1373–1382

    Article  PubMed  CAS  Google Scholar 

  • Evlashev A, Valentin H, Rivailler P, Azocar O, Rabourdin-Combe C, Horvat B (2001) Differential permissivity to measles virus infection of human and CD46-transgenic murine lymphocytes. JGen Virol 82:2125–2129

    CAS  Google Scholar 

  • Feierbach B, Bisher M, Goodhouse J, Enquist LW (2007) In vitro analysis of transneuronal spread of an alphaherpesvirus infection in peripheral nervous system neurons. J Virol 81:6846– 6857

    Article  PubMed  CAS  Google Scholar 

  • Firsching R, Buchholz CJ, Schneider U, Cattaneo R, ter Meulen V, Schneider-Schaulies J (1999) Measles virus spread by cell-cell contacts: uncoupling of contact-mediated receptor (CD46) downregulation from virus uptake. J Virol 73:5265–5273

    PubMed  CAS  Google Scholar 

  • Fugier-Vivier I, Servet-Delprat C, Rivailler P, Rissoan MC, Liu YJ, Rabourdin-Combe C (1997) Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. J Exp Med 186:813–823

    Article  PubMed  CAS  Google Scholar 

  • Gahwiler BH (1981) Organotypic monolayer cultures of nervous tissue. J Neurosci Methods 4:329–342

    Article  PubMed  CAS  Google Scholar 

  • Greber UF, Way M (2006) A superhighway to virus infection. Cell 124:741–754

    Article  PubMed  CAS  Google Scholar 

  • Griffin DE (2001) Measles virus. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams and Wilkins, Philadelphia, pp 1401–1441

    Google Scholar 

  • Griffin DE, Pan CH, Moss WJ (2008) Measles vaccines. Front Biosci 13:1352–1370

    Article  PubMed  CAS  Google Scholar 

  • Griffin DE, Mullinix J, Narayan O, Johnson RT (1974) Age dependence of viral expression: comparative pathogenesis of two rodent-adapted strains of measles virus in mice. Infect Immun 9:690–695

    PubMed  CAS  Google Scholar 

  • Hafezparast M, Klocke R, Ruhrberg C, Marquardt A, Ahmad-Annuar A, Bowen S, Lalli G, Witherden AS, Hummerich H, Nicholson S, Morgan PJ, Oozageer R, Priestley J V, Averill S,King VR, Ball S, Peters J, Toda T, Yamamoto A, Hiraoka Y, Augustin M, Korthaus D, Wattler S, Wabnitz P, Dickneite C, Lampel S, Boehme F, Peraus G, Popp A, Rudelius M, Schlegel J, Fuchs H, de Angelis MH, Schiavo G, Shima DT, Russ AP, Stumm G, Martin JE, FiMC (2003) Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300:808–812

    Article  PubMed  CAS  Google Scholar 

  • Hafezparast M, Brandner S, Linehan J, Martin JE, Collinge J, Fisher EMC (2004) Prion disease incubation time is not affected in mice heterozygous for a dynein mutation. Biochem Biophys Res Comm 326:18–22

    Article  CAS  Google Scholar 

  • Henry T, Gorvel JP, Meresse S (2006) Molecular motors hijacking by intracellular pathogens. Cell Microbiol 8:23–32

    Article  PubMed  CAS  Google Scholar 

  • Hirsch RL, Griffin DE, Johnson RT, Cooper SJ, Lindo de Soriano I, Roedenbeck S, Vaisberg A (1984) Cellular immune responses during complicated and uncomplicated measles virus infections of man. Clin Immunol Immunopathol 31:1–12

    Article  PubMed  CAS  Google Scholar 

  • Horvat B, Rivailler P, Varior-Krishnan G, Cardoso A, Gerlier D, Rabourdin-Combe C (1996) Transgenic mice expressing human measles virus (MV) receptor CD46 provide cells exhibiting different permissivities to MV infections. J Virol 70:6673–6681

    PubMed  CAS  Google Scholar 

  • Hsu EC, Iorio C, Sarangi F, Khine AA, Richardson CD (2001) CDw150(SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immunosuppressive properties of this virus. Virology 279:9–21

    Article  PubMed  CAS  Google Scholar 

  • Johnson KP, Norrby E (1974) Subacute sclerosing panencephalitis (SSPE) agent in hamsters. III. Induction of defective measles infection in hamster brain. Exp Mol Pathol 21:166–178

    Article  PubMed  CAS  Google Scholar 

  • Johnson KP, Swoveland P (1977) Measles antigen distribution in brains of chronically infected hamsters. An immunoperoxidase study of experimental subacute sclerosing panencephalitis. Lab Invest 37:459–465

    PubMed  CAS  Google Scholar 

  • Johnson RT (1998) Viral infections of the nervous system. Lippincott-Raven, Philadelphia.

    Google Scholar 

  • Jouvenet N, Monaghan P, Way M, Wileman T (2004) Transport of African swine fever virus from assembly sites to the plasma membrane is dependent on microtubules and conventional kinesin. J Virol 78:7990–8001

    Article  PubMed  CAS  Google Scholar 

  • Karp CL, Wysocka M, Wahl LM, Ahearn JM, Cuomo PJ, Sherry B, Trinchieri G, Griffin DE (1996) Mechanism of suppression of cell-mediated immunity by measles virus. Science 273:228–231

    Article  PubMed  CAS  Google Scholar 

  • Katayama Y, Hotta H, Nishimura A, Tatsuno Y, Homma M (1995) Detection of measles virus nucleoprotein mRNA in autopsied brain tissues. J Gen Virol 76:3201–3204

    Article  PubMed  CAS  Google Scholar 

  • Katayama Y, Kohso K, Nishimura A, Tatsuno Y, Homma M, Hotta H (1998) Detection of measles virus mRNA from autopsied human tissues. J Clin Microbiol 36:299–301

    PubMed  CAS  Google Scholar 

  • Lamb RA, Kolakofsky D (2001) Paramyxoviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams and Wilkins, Philadelphia, pp 1305–1340

    Google Scholar 

  • Lawrence DM, Vaughn MM, Belman AR, Cole JS, Rall GF (1999) Immune response-mediated protection of adult but not neonatal mice from neuron-restricted measles virus infection and central nervous system disease. J Virol 73:1795–1801

    PubMed  CAS  Google Scholar 

  • Lawrence DM, Patterson CE, Gales TL, D'Orazio JL, Vaughn MM, Rall GF (2000) Measles virus spread between neurons requires cell contact but not CD46 expression, syncytium formation, or extracellular virus production. J Virol 74:1908–1918

    Article  PubMed  CAS  Google Scholar 

  • Leonard VHJ, Sinn PL, Hodge G, Miest T, Devaux P, Oezguen N, Braun W, McCray PB, McChesney MB, Cattaneo R (2008) Measles virus blind to its epithelial cell receptor remains virulent in rhesus monkeys but cannot cross the airway epithelium and is not shed. J Clin Invest 118:2448

    PubMed  CAS  Google Scholar 

  • Leopold PL, Pfister KK (2006) Viral strategies for intracellular trafficking: motors and microtubules. Traffic 7:516–523

    Article  PubMed  CAS  Google Scholar 

  • Ludlow M, McQuaid S, Cosby SL, Cattaneo R, Rima BK, Duprex WP (2005) Measles virus superinfection immunity and receptor redistribution in persistently infected NT2 cells. J Gen Virol 86:2291–2303

    Article  PubMed  CAS  Google Scholar 

  • Ludlow M, Duprex WP, Cosby SL, Allen IV, McQuaid S (2007) Advantages of using recombinant measles viruses expressing a fluorescent reporter gene with vibratome slice technology in experimental measles neuropathogenesis. Neuropathol Appl Neurobiol doi: 10.1111/j.1365– 2990.2007.00900.x

    Google Scholar 

  • Lyman MG, Feierbach B, Curanovic D, Bisher M, Enquist LW (2007) Pseudorabies virus Us9 directs axonal sorting of viral capsids. J Virol 81:11363–11371

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie GG, Keen CL, Oteiza PI (2006) Microtubules are required for NF-kappaB nuclear translocation in neuroblastoma IMR-32 cells: modulation by zinc. J Neurochem 99:402–415

    Article  PubMed  CAS  Google Scholar 

  • Maisner A, Klenk HD, Herrler G (1998) Polarized budding of measles virus is not determined by viral surface glycoproteins. J Virol 72:5276–5278

    PubMed  CAS  Google Scholar 

  • Makhortova NR, Askovich P, Patterson CE, Gechman LA, Gerard NP, Rall GF (2007) Neurokinin-1 enables measles virus trans-synaptic spread in neurons. Virology 362:235–244

    Article  PubMed  CAS  Google Scholar 

  • Manchester M, Rall GF (2001) Model systems: transgenic mouse models for measles pathogene-sis. Trends Microbiol 9:19–23

    Article  PubMed  CAS  Google Scholar 

  • Manchester M, Eto DS, Oldstone MBA (1999) Characterization of the inflammatory response during acute measles encephalitis in NSE-CD46 transgenic mice. J Neuroimmunol 96:207–217

    Article  PubMed  CAS  Google Scholar 

  • Manchester M, Eto DS, Valsamakis A, Liton PB, Fernandez-Munoz R, Rota PA, Bellini WJ, Forthal DN, Oldstone MBA (2000) Clinical isolates of measles virus use CD46 as a cellular receptor. J Virol 74:3967–3974

    Article  PubMed  CAS  Google Scholar 

  • Mandelkow E, Mandelkow EM (2002) Kinesin motors and disease. Trends Cell Biol 12:585–591

    Article  PubMed  CAS  Google Scholar 

  • McQuaid S, Cosby SL (2002) An immunohistochemical study of the distribution of the measles virus receptors, CD46 and SLAM, in normal human tissues and subacute sclerosing panen-cephalitis. Lab Invest 82:403–409

    PubMed  CAS  Google Scholar 

  • McQuaid S, Campbell S, Wallace IJ, Kirk J, Cosby SL (1998) Measles virus infection and replication in undifferentiated and differentiated human neuronal cells in culture. J Virol 72:5245–5250

    PubMed  CAS  Google Scholar 

  • Mehta PD, Thormar H (1979) Immunological studies of subacute measles encephalitis in ferrets: similarities to human subacute sclerosing panencephalitis. J Clin Microbiol 9:601–604

    PubMed  CAS  Google Scholar 

  • Moeller-Ehrlich K, Ludlow M, Beschorner R, Meyermann R, Rima BK, Duprex WP, Niewiesk S, Schneider-Schaulies J (2007) Two functionally linked amino acids in the stem 2 region of measles virus haemagglutinin determine infectivity and virulence in the rodent central nervous system. J Gen Virol 88:3112–3120

    Article  PubMed  CAS  Google Scholar 

  • Moll M, Klenk HD, Herrler G, Maisner A (2001) A single amino acid change in the cytoplasmic domains of measles virus glycoproteins H and F alters targeting, endocytosis, and cell fusion in polarized Madin-Darby canine kidney cells. J Biol Chem 276:17887–17894

    Article  PubMed  CAS  Google Scholar 

  • Moll M, Pfeuffer J, Klenk HD, Niewiesk S, Maisner A (2004) Polarized glycoprotein targeting affects the spread of measles virus in vitro and in vivo. J Gen Virol 85:1019–1027

    Article  PubMed  CAS  Google Scholar 

  • Moss W, Ryon J, Monze M, Griffin D (2002) Differential regulation of interleukin-4 (IL-4), IL-5, and IL-10 during measles in Zambian children. J Infect Dis 186:879–887

    Article  PubMed  CAS  Google Scholar 

  • Moyer SA, Baker SC, Horikami SM (1990) Host cell proteins required for measles virus reproduction. J Gen Virol 71:775–783

    Article  PubMed  CAS  Google Scholar 

  • Mrkic B, Pavlovic J, Rulicke T, Volpe P, Buchholz CJ, Hourcade D, Atkinson JP, Aguzzi A, Cattaneo R (1998) Measles virus spread and pathogenesis in genetically modified mice. J Virol 72:7420–7427

    PubMed  CAS  Google Scholar 

  • Naim HY, Ehler E, Billeter MA (2000) Measles virus matrix protein specifies apical virus release and glycoprotein sorting in epithelial cells. EMBO J 19:3576–3585

    Article  PubMed  CAS  Google Scholar 

  • Naniche D, Varior-Krishnan G, Cervoni F, Wild TF, Rossi B, Rabourdin-Combe C, Gerlier D (1993) Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67:6025–6032

    PubMed  CAS  Google Scholar 

  • Naniche D, Reed SI, Oldstone MB (1999) Cell cycle arrest during measles virus infection: a G0-like block leads to suppression of retinoblastoma protein expression. J Virol 73:1894–1901

    PubMed  CAS  Google Scholar 

  • Niewiesk S (1999) Cotton rats (Sigmodon hispidus ): an animal model to study the pathogenesis of measles virus infection. Immunol Lett 65:47–50

    Article  PubMed  CAS  Google Scholar 

  • Niewiesk S, Schneider-Schaulies J, Ohnimus H, Jassoy C, Schneider-Schaulies S, Diamond L, Logan JS, ter Meulen V (1997) CD46 expression does not overcome the intracellular block of measles virus replication in transgenic rats. J Virol 71:7969–7973

    PubMed  CAS  Google Scholar 

  • Niewiesk S, Ohnimus H, Schnorr JJ, Gotzelmann M, Schneider-Schaulies S, Jassoy C, ter Meulen V (1999) Measles virus-induced immunosuppression in cotton rats is associated with cell cycle retardation in uninfected lymphocytes. J Gen Virol 80:2023–2029

    PubMed  CAS  Google Scholar 

  • Niewiesk S, Gotzelmann M, ter Meulen V (2000) Selective in vivo suppression of T lym p- hocyte responses in experimental measles virus infection. Proc Natl Acad Sci U S A 97: 4251–4255

    Article  PubMed  CAS  Google Scholar 

  • Norrby E (1971) The effect of a carbobenzoxy tripeptide on the biological activities of measles virus. Virology 44:599–608

    Article  PubMed  CAS  Google Scholar 

  • Norrby E, Kristensson K (1997) Measles virus in the brain. Brain Res Bull 44:213–220

    Article  PubMed  CAS  Google Scholar 

  • Ogata S, Ogata A, Schneider-Schaulies S, Schneider-Schaulies J (2004) Expression of the inter-feron-alpha/beta-inducible MxA protein in brain lesions of subacute sclerosing panencephali-tis. J Neurol Sci 223:113–119

    Article  PubMed  CAS  Google Scholar 

  • Ohka S, Yang WX, Terada E, Iwasaki K, Nomoto A (1998) Retrograde transport of intact polio-virus through the axon via the fast transport system. Virology 250:67–75

    Article  PubMed  CAS  Google Scholar 

  • Ohka S, Matsuda N, Tohyama K, Oda T, Morikawa M, Kuge S, Nomoto A (2004) Receptor (CD155)-dependent endocytosis of poliovirus and retrograde axonal transport of the endo-some. J Virol 78:7186–7198

    Article  PubMed  CAS  Google Scholar 

  • Ohno S, Ono N, Seki F, Takeda M, Kura S, Tsuzuki T, Yanagi Y (2007) Measles virus infection of SLAM (CD150) knockin mice reproduces tropism and immunosuppression in human infection. J Virol 81:1650–1659

    Article  PubMed  CAS  Google Scholar 

  • Oldstone MBA, Lewicki H, Thomas D, Tishon A, Dales S, Patterson J, Manchester M, Homann D, Naniche D, Holz A (1999) Measles virus infection in a transgenic model: virus-induced immunosuppression and central nervous system disease. Cell 98:629–640

    Article  PubMed  CAS  Google Scholar 

  • Ono N, Tatsuo H, Hidaka Y, Aoki T, Minagawa H, Yanagi Y (2001a) Measles viruses on throat swabs from measles patients use signaling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. J Virol 75:4399–4401

    Article  CAS  Google Scholar 

  • Ono N, Tatsuo H, Tanaka K, Minagawa H, Yanagi Y (2001b) V domain of human SLAM (CDw150) is essential for its function as a measles virus receptor. J Virol 75:1594–1600

    Article  CAS  Google Scholar 

  • Pan CH, Valsamakis A, Colella T, Nair N, Adams RJ, Polack FP, Greer CE, Perri S, Polo JM, Griffin DE (2005) Inaugural article: modulation of disease, T cell responses, and measles virus clearance in monkeys vaccinated with H-encoding alphavirus replicon particles. Proc Natl Acad Sci U S A 102:11581–11588

    Article  PubMed  CAS  Google Scholar 

  • Pasetti MF, Resendiz-Albor A, Ramirez K, Stout R, Papania M, Adams RJ, Polack FP, Ward BJ, Burt D, Chabot S, Ulmer J, Barry EM, Levine MM (2007) Heterologous prime-boost strategy to immunize very young infants against measles: pre-clinical studies in rhesus macaques. Clin Pharmacol Ther 82:672–685

    Article  PubMed  CAS  Google Scholar 

  • Patterson JB, Cornu TI, Redwine J, Dales S, Lewicki H, Holz A, Thomas D, Billeter MA, Oldstone MBA (2001) Evidence that the hypermutated M protein of a subacute sclerosing panencephalitis measles virus actively contributes to the chronic progressive CNS disease. Virology 291:215–225

    Article  PubMed  CAS  Google Scholar 

  • Patterson CE, Lawrence DM, Echols LA, Rall GF (2002) Immune-mediated protection from measles virus-induced central nervous system disease is noncytolytic and gamma interferon dependent. J Virol 76:4497–4506

    Article  PubMed  CAS  Google Scholar 

  • Patterson CE, Daley JK, Echols LA, Lane TE, Rall GF (2003) Measles virus infection induces chemokine synthesis by neurons. J Immunol 171:3102–3109

    PubMed  CAS  Google Scholar 

  • Paula-Barbosa MM, Cruz C (1981) Nerve cell fusion in a case of subacute sclerosing panencephalitis. Ann Neurol 9:400–403

    Article  PubMed  CAS  Google Scholar 

  • Pipo-Deveza JR, Kusuhara K, Silao CLT, Lukban MB, Salonga AM, Sanchez BC, Kira R, Takemoto M, Torisu H, Hara T (2006) Analysis of MxA, IL-4, and IRF-1 genes in Filipino patients with subacute sclerosing panencephalitis. Neuropediatrics 37:222–228

    Article  PubMed  CAS  Google Scholar 

  • Ploubidou A, Way M (2001) Viral transport and the cytoskeleton. Curr Opin Cell Biol 13:97–105

    Article  PubMed  CAS  Google Scholar 

  • Plumb J, Duprex WP, Cameron CH, Richter-Landsberg C, Talbot P, McQuaid S (2002) Infection of human oligodendroglioma cells by a recombinant measles virus expressing enhanced green fluorescent protein. J Neurovirol 8:24–34

    Article  PubMed  Google Scholar 

  • Polack FP, Lee SH, Permar S, Manyara E, Nousari HG, Jeng Y, Mustafa F, Valsamakis A, Adams RJ, Robinson HL, Griffin DE (2000) Successful DNA immunization against measles: neutralizing antibody against either the hemagglutinin or fusion glycoprotein protects rhesus macaques without evidence of atypical measles. Nat Med 6:776–781

    Article  PubMed  CAS  Google Scholar 

  • Radecke F, Spielhofer P, Schneider H, Kaelin K, Huber M, Dotsch C, Christiansen G, Billeter MA (1995) Rescue of measles viruses from cloned DNA. EMBO J 14:5773–5784

    PubMed  CAS  Google Scholar 

  • Radtke K, Dohner K, Sodeik B (2006) Viral interactions with the cytoskeleton: a hitchhiker's guide to the cell. Cell Microbiol 8:387–400

    Article  PubMed  CAS  Google Scholar 

  • Rall GF (2003) Measles virus 1998–2002: progress and controversy. Annu Rev Microbiol 57:343–367

    Article  PubMed  CAS  Google Scholar 

  • Rall GF, Manchester M, Daniels LR, Callahan EM, Belman AR, Oldstone MB (1997) A trans-genic mouse model for measles virus infection of the brain. Proc Natl Acad Sci U S A 94:4659–4663

    Article  PubMed  CAS  Google Scholar 

  • Richardson CD, Choppin PW (1983) Oligopeptides that specifically inhibit membrane fusion by paramyxoviruses: studies on the site of action. Virology 131:518–532

    Article  PubMed  CAS  Google Scholar 

  • Richardson CD, Scheid A, Choppin PW (1980) Specific inhibition of paramyxovirus and myxo-virus replication by oligopeptides with amino acid sequences similar to those at the N-termini of the F1 or HA2 viral polypeptides. Virology 105:205–222

    Article  PubMed  CAS  Google Scholar 

  • Riedl P, Moll M, Klenk HD, Maisner A (2002) Measles virus matrix protein is not cotransported with the viral glycoproteins but requires virus infection for efficient surface targeting. Virus Res 83:1–12

    Article  PubMed  CAS  Google Scholar 

  • Rietdorf J, Ploubidou A, Reckmann I, Holmstrom A, Frischknecht F, Zettl M, Zimmermann T, Way M (2001) Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus. Nat Cell Biol 3:992–1000

    Article  PubMed  CAS  Google Scholar 

  • Rima BK, Duprex WP (2005) Molecular mechanisms of measles virus persistence. Virus Res 111:132–147

    Article  PubMed  CAS  Google Scholar 

  • Rima BK, Earle JA, Baczko K, ter Meulen V, Liebert UG, Carstens C, Carabana J, Caballero M, Celma ML, Fernandez-Munoz R (1997) Sequence divergence of measles virus haemagglutinin during natural evolution and adaptation to cell culture. J Gen Virol 78:97–106

    PubMed  CAS  Google Scholar 

  • Roos RP, Griffin DE, Johnson RT (1978) Determinants of measles virus (hamster neurotropic strain) replication in mouse brain. J Infect Dis 137:722–727

    PubMed  CAS  Google Scholar 

  • Rudd PA, Cattaneo R, von Messling V (2006) Canine distemper virus uses both the anterograde and the hematogenous pathway for neuroinvasion. J Virol 80:9361–9370

    Article  PubMed  CAS  Google Scholar 

  • Runkler N, Pohl C, Schneider-Schaulies S, Klenk HD, Maisner A (2007) Measles virus nucleo-capsid transport to the plasma membrane requires stable expression and surface accumulation of the viral matrix protein. Cell Microbiol 9:1203–1214

    Article  PubMed  CAS  Google Scholar 

  • Runkler N, Dietzel E, Moll M, Klenk HD, Maisner A (2008) Glycoprotein targeting signals influence the distribution of measles virus envelope proteins and virus spread in lymphocytes. J Gen Virol 89:687–696

    Article  PubMed  CAS  Google Scholar 

  • Samuel MA, Wang H, Siddharthan V, Morrey JD, Diamond MS (2007) Axonal transport mediates West Nile virus entry into the central nervous system and induces acute flaccid paralysis. Proc Natl Acad Sci U S A 104:17140–17145

    Article  PubMed  CAS  Google Scholar 

  • Schneider H, Spielhofer P, Kaelin K, Dotsch C, Radecke F, Sutter G, Billeter MA (1997) Rescue of measles virus using a replication-deficient vaccinia-T7 vector. J Virol Methods 64:57–64

    Article  PubMed  CAS  Google Scholar 

  • Schneider-Schaulies J, ter Meulen V, Schneider-Schaulies S (2003) Measles infection of the central nervous system. J Neurovirol 9:247–252

    Article  PubMed  CAS  Google Scholar 

  • Schnorr JJ, Seufert M, Schlender J, Borst J, Johnston IC, ter Meulen V, Schneider-Schaulies S (1997) Cell cycle arrest rather than apoptosis is associated with measles virus contact-mediated immunosuppression in vitro. J Gen Virol 78:3217–3226

    PubMed  CAS  Google Scholar 

  • Schubert S, Moller-Ehrlich K, Singethan K, Wiese S, Duprex WP, Rima BK, Niewiesk S, Schneider-Schaulies J (2006) A mouse model of persistent brain infection with recombinant measles virus. J Gen Virol 87:2011–2019

    Article  PubMed  CAS  Google Scholar 

  • Sellin CI, Davoust N, Guillaume V, Baas D, Belin MF, Buckland R, Wild TF, Horvat B (2006) High pathogenicity of wild-type measles virus infection in CD150 (SLAM) transgenic mice. J Virol 80:6420–6429

    Article  PubMed  CAS  Google Scholar 

  • Servet-Delprat C, Vidalain PO, Bausinger H, Manie S, Le Deist F, Azocar O, Hanau D, Fischer A, Rabourdin-Combe C (2000) Measles virus induces abnormal differentiation of CD40 lig- and-activated human dendritic cells. J Immunol 164:1753–1760

    PubMed  CAS  Google Scholar 

  • Sheppard RD, Raine CS, Burnstein T, Bornstein MB, Feldman LA (1975) Cell-associated suba-cute sclerosing panencephalitis agent studied in organotypic central nervous system cultures: viral rescue attempts and morphology. Infect Immun 12:891–900

    PubMed  CAS  Google Scholar 

  • Shingai M, Inoue N, Okuno T, Okabe M, Akazawa T, Miyamoto Y, Ayata M, Honda K, Kurita-Taniguchi M, Matsumoto M, Ogura H, Taniguchi T, Seya T (2005) Wild-type measles virus infection in human CD46/CD150-transgenic mice: CD11c-positive dendritic cells establish systemic viral infection. J Immunol 175:3252–3261

    PubMed  CAS  Google Scholar 

  • Sips GJ, Chesik D, Glazenburg L, Wilschut J, De Keyser J, Wilczak N (2007) Involvement of morbilliviruses in the pathogenesis of demyelinating disease. Rev Med Virol 17:223–244

    Article  PubMed  CAS  Google Scholar 

  • Smith GA, Gross SP, Enquist LW (2001) Herpesviruses use bidirectional fast-axonal transport to spread in sensory neurons. Proc Natl Acad Sci U S A 98:3466–3470

    Article  PubMed  CAS  Google Scholar 

  • Sodeik B, Ebersold MW, Helenius A (1997) Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J Cell Biol 136:1007–1021

    Article  PubMed  CAS  Google Scholar 

  • Stallcup KC, Raine CS, Fields BN (1983) Cytochalasin B inhibits the maturation of measles virus. Virology 124:59–74

    Article  PubMed  CAS  Google Scholar 

  • Steele MD, Giddens WE Jr, Valerio M, Sumi SM, Stetzer ER (1982) Spontaneous paramyxoviral encephalitis in nonhuman primates (Macaca mulatta and M. nemestrina). Vet Pathol 19:132–139

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Burns JB, Howell JM, Fujinami RS (1998) Suppression of antigen-specific T cell proliferation by measles virus infection: role of a soluble factor in suppression. Virology 246:24–33

    Article  PubMed  CAS  Google Scholar 

  • Takasu T, Mgone JM, Mgone CS, Miki K, Komase K, Namae H, Saito Y, Kokubun Y, Nishimura T, Kawanishi R, Mizutani T, Markus TJ, Kono J, Asuo PG, Alpers MP (2003) A continuing high incidence of subacute sclerosing panencephalitis (SSPE) in the Eastern Highlands of Papua New Guinea. Epidemiol Infect 131:887–898

    Article  PubMed  CAS  Google Scholar 

  • Takeda M, Tahara M, Hashiguchi T, Sato TA, Jinnouchi F, Ueki S, Ohno S, Yanagi Y (2007) A human lung carcinoma cell line supports efficient measles virus growth and syncytium formation via a SLAM- and CD46-independent mechanism. J Virol 81:12091–12096

    Article  PubMed  CAS  Google Scholar 

  • Tamashiro VG, Perez HH, Griffin DE (1987) Prospective study of the magnitude and duration of changes in tuberculin reactivity during uncomplicated and complicated measles. Pediatr Infect Dis J 6:451–454

    Article  PubMed  CAS  Google Scholar 

  • Tatsuo H, Ono N, Tanaka K, Yanagi Y (2000) SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893–897

    Article  PubMed  CAS  Google Scholar 

  • Thormar H, Mehta PD, Lin FH, Brown HR, Wisniewski HM (1983) Presence of oligoclonal immunoglobulin G bands and lack of matrix protein antibodies in cerebrospinal fluids and sera of ferrets with measles virus encephalitis. Infect Immun 41:1205–1211

    PubMed  CAS  Google Scholar 

  • Topp KS, Meade LB, LaVail JH (1994) Microtubule polarity in the peripheral processes of trigeminal ganglion cells: relevance for the retrograde transport of herpes simplex virus. J Neurosci 14:318–325

    PubMed  CAS  Google Scholar 

  • Torisu H, Kusuhara K, Kira R, Bassuny WM, Sakai Y, Sanefuji M, Takemoto M, Hara T (2004) Functional MxA promoter polymorphism associated with subacute sclerosing panencephalitis.Neurology 62:457–460

    PubMed  CAS  Google Scholar 

  • Tyrrell DLJ, Norrby E (1978) Structural polypeptides of measles virus. J Gen Virol 39:219–229

    Article  PubMed  CAS  Google Scholar 

  • Urbanska EM, Chambers BJ, Ljunggren HG, Norrby E, Kristensson K (1997) Spread of measles virus through axonal pathways into limbic structures in the brain of TAP1−/−mice. J Med Virol 52:362–369

    Article  PubMed  CAS  Google Scholar 

  • Van PC, Rammohan KW, McFarland HF, Dubois-Dalcq M (1979) Selective neuronal, dendritic, and postsynaptic localization of viral antigen in measles-infected mice. Lab Invest 40:99–108

    Google Scholar 

  • Vanchiere JA, Bellini WJ, Moyer SA (1995) Hypermutation of the phosphoprotein and altered mRNA editing in the hamster neurotropic strain of measles virus. Virology 207:555–561

    Article  PubMed  CAS  Google Scholar 

  • Verhey KJ, Lizotte DL, Abramson T, Barenboim L, Schnapp BJ, Rapoport TA (1998) Light chain-dependent regulation of kinesin's interaction with microtubules. J Cell Biol 143:1053–1066

    Article  PubMed  CAS  Google Scholar 

  • Verhey KJ, Meyer D, Deehan R, Blenis J, Schnapp BJ, Rapoport TA, Margolis B (2001) Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J Cell Biol 152:959–970

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA (2004) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10:1366–1373

    Article  PubMed  CAS  Google Scholar 

  • Ward BM, Moss B (2004) Vaccinia virus A36R membrane protein provides a direct link between intracellular enveloped virions and the microtubule motor kinesin. J Virol 78:2486–2493

    Article  PubMed  CAS  Google Scholar 

  • Welstead GG, Iorio C, Draker R, Bayani J, Squire J, Vongpunsawad S, Cattaneo R, Richardson CD (2005) Measles virus replication in lymphatic cells and organs of CD150 (SLAM) transgenic mice. Proc Natl Acad Sci U S A 102:16415–16420

    Article  PubMed  CAS  Google Scholar 

  • Wyde PR, Ambrose MW, Voss TG, Meyer HL, Gilbert BE (1992) Measles virus replication in lungs of hispid cotton rats after intranasal inoculation. Proc Soc Exp Biol Med 201:80–87

    PubMed  CAS  Google Scholar 

  • Wyde PR, Moore-Poveda DK, Daley NJ, Oshitani H (1999) Replication of clinical measles virus strains in hispid cotton rats. Proc Soc Exp Biol Med 221:53–62

    Article  PubMed  CAS  Google Scholar 

  • Yang WX, Terasaki T, Shiroki K, Ohka S, Aoki J, Tanabe S, Nomura T, Terada E, Sugiyama Y, Nomoto A (1997) Efficient delivery of circulating poliovirus to the central nervous system independently of poliovirus receptor. Virology 229:421–428

    Article  PubMed  CAS  Google Scholar 

  • Zhai RG, Bellen HJ (2004) Hauling t-SNAREs on the microtubule highway. Nat Cell Biol 6:918–919

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Rall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Young, V.A., Rall, G.F. (2009). Making It to the Synapse: Measles Virus Spread in and Among Neurons. In: Griffin, D.E., Oldstone, M.B.A. (eds) Measles. Current Topics in Microbiology and Immunology, vol 330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70617-5_1

Download citation

Publish with us

Policies and ethics