Skip to main content

Signal-Based AE Analysis

  • Chapter
Acoustic Emission Testing

Abstract

Approaches in recording and analyzing AE signals can be divided into two main groups: parameter-based (classical) and signal-based (quantitative) AE techniques. Both approaches are currently applied, with success for different applications, and it is useful to understand their differences, which should here be summarized in addition to the more detailed description of parameter-based techniques in Chap. 4. The reason that two approaches exist is related to the rapid developments in microelectronics over the last few decades. Previously, it was not possible to record and store a large number of waveforms (signals) over a sufficiently short period of time. Even though significant technical advances have been made in recent years, it is still not possible to use signal-based techniques to monitor large structures and buildings. In addition, the relatively high financial costs and the time required to apply modern signal-based techniques, are a reason why parameter-based techniques are still popular. Before the differences are described in detail, it should be emphasized that the discrepancies between the two approaches are becoming smaller. Some of the devices used for the classical AE technique are now able to store the waveforms of the detected AE signals, even though this is not the primary function of these devices. For applications using signal-based analysis techniques, equipment based on transient recorders is typically used. It is easy to apply custom software tools to extract AE parameters for statistical analyses of the data obtained with these instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aki K, Richards PG (1980) Quantitative seismology. Freeman, San Francisco

    Google Scholar 

  • Andersen LM (2001) A relative moment tensor inversion technique applied to seismicity induced by mining. PhD thesis, University of the Witwatersrand, Johannesburg, p 230

    Google Scholar 

  • ASTM (1982) E610 - Standard Definitions of Terms Relating to Acoustic Emission. ASTM, pp 579-581

    Google Scholar 

  • Backus GE, Mulcahy M (1976) Moment tensor and other phenomenological descriptions of seismic sources. J. R. astr. Soc. 46:341-361

    MATH  Google Scholar 

  • Balázs GL, Grosse CU, Koch R, Reinhardt HW (1993) Acoustic emission monitoring on steel-concrete interaction. Otto Graf Journal 4:56-90

    Google Scholar 

  • Balázs GL, Grosse CU, Koch R (1996a) Acoustic emission technique for detection of internal cracking in concrete. Bratislava, 2. RILEM Int. Conf. on the Diagn. of Concrete Structures

    Google Scholar 

  • Balázs GL, Grosse CU, Koch R, Reinhardt HW (1996b) Damage accumulation on deformed steel bar to concrete interaction detected by acoustic emission technique. Mag. of Concrete Research 48:311-320

    Google Scholar 

  • Bar-Cohen Y, Xue T, Lih SS (1996) Polymer piezoelectric transducers for ultrasonic NDE. NDTnet 1(9):7

    Google Scholar 

  • Barker JS, Langston CA (1982) Moment tensor inversion of complex earthquakes. Geophys. J. R. Astr. Soc. 46:341–371

    Google Scholar 

  • Ben-Menahem A, Singh SJ (1981) Seismic waves and sources. Springer, New York

    MATH  Google Scholar 

  • Berger H (ed) (1977) Nondestructive testing standards - a review. Gaithersburg, ASTM, Philadelphia

    Google Scholar 

  • Berthelot JM, Robert JL (1987) Modeling concrete damage by acoustic emission. J. of Ac. Emission 6:43-60

    Google Scholar 

  • Brawn DR (1989) A maximum entropy approach to underconstraint and inconsistency in the seismic source inverse problem; Finding and interpreting seismic source moments, Ph.D. Thesis, University of the Witwatersrand, Johannesburg

    Google Scholar 

  • Buland R (1976) The mechanics of locating earthquakes. Bull. Seis. Soc. Am. 66:173-187

    Google Scholar 

  • Calvalho FCS, Shah KR, Labuz J (1998) Source model of acoustic emission using displacement discontinuities. Int. J. Rock. Mech. Min. Sci. Geomech. Abstr., 35:514–515

    Article  Google Scholar 

  • Carter GC, Ferrie JF (1979) A coherence spectral estimation program. Weinstein CJ (Programs for digital signal processing), IEEE Press, 2.3-1-2.3-18

    Google Scholar 

  • CEN (2000) European Standard EN 1330-9 – Nondestructive Testing - Terminology - Part 9: Terms used in Acoustic Emission Analysis. Comité Européan de Normalisation CEN. (1330-9) release 2000-3, pp 1-23

    Google Scholar 

  • Dahm T (1993) Relativmethoden zur Bestimmung der Abstrahlcharakteristik von seismischen Quellen. Thesis, University of Karlsruhe, Germany, p 122

    Google Scholar 

  • Dahm T (1996) Relative moment tensor inversion based on ray theory: theory and synthetic tests. Geophys. J. Int. 124:245-257

    Article  Google Scholar 

  • DGZfP. Merkblatt SE-3(1991) Richtlinie zur Charakterisierung des Schallemissionsprüfgerätes im Labor. Deutsche Gesellschaft für Zerstörungsfreie Prüfung. Recommendation SE-3

    Google Scholar 

  • Drouillard TF (1979) Acoustic emission - a bibliography with abstracts. Plenum Publishing Corporation p 787

    Google Scholar 

  • Drouillard TF (1988) Introduction to acoustic emission. Materials Evaluation 46:174-179

    Google Scholar 

  • Drouillard TF (1996) A history of acoustic emission. J. Acoustic Emission 14 (1):1-34

    Google Scholar 

  • Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals and other measures of statistical accuracy. Statistical Science 1:54-77

    Article  MathSciNet  Google Scholar 

  • Enoki M, Kishi T (1988) Theory and analysis of deformation moment tensor due to microcracking. Int. J. Frac. 38:295-310

    Google Scholar 

  • Feignier B, Young RP (1992) Moment tensor inversion of induced microseismic events: Evidence of nonshear failures in the –4 < M < –2 moment magnitude range, Geophys. Res. Lett. 19:1503–1506

    Article  Google Scholar 

  • Förster F, Scheil E (1936) Akustische Untersuchungen der Bildung von Martensitnadeln. Zeitschrift für Metallkunde 28:245-247

    Google Scholar 

  • Fukunaga Y, Kishi T (1986) Progress in Acoustic Emission III. Yamaguchi, K. et al. (eds), Jap. Soc. of Non-Destr. Insp., Tokyo, pp 722-731

    Google Scholar 

  • Geiger L (1910) Herdbestimmung bei Erdbeben aus den Ankunftszeiten. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen 4:331-349

    Google Scholar 

  • Glaser SD, Weiss GG, Johnson LR (1998) Body waves recorded inside an elastic half-space by an embedded, wideband velocity sensor. L. Ac. Soc. Am. 104 (3), Pt. 1:1404-1412

    Article  Google Scholar 

  • Goldbach OD, Rangasamy T, Linzer LM, Spottiswoode SM, Kataka MO, du Pisani P (2006) SIMRAC 04-03-03: Lead-lag design criteria and seismicity patterns. SIMRAC Final Project Report, Department of Minerals and Energy, South Africa. Under review

    Google Scholar 

  • Grosse CU, Reinhardt HW, Balázs GL (1995) Acoustic emission data from pullout tests of reinforced concrete analysed with respect to passive US-tomography. Jones JP (ed) 21,. Laguna Beach, Plenum Press, New York, pp 635-647

    Google Scholar 

  • Grosse CU (1996) Quantitative zerstörungsfreie Prüfung von Baustoffen mittels Schallemissionsanalyse und Ultraschall. Thesis, University of Stuttgart, Germany, p 168

    Google Scholar 

  • Grosse CU, Weiler B, Reinhardt HW (1997) Relative moment tensor inversion applied to concrete fracture tests. J. of Acoustic Emission, 14(3-4):64-87

    Google Scholar 

  • Grosse CU, Reinhardt HW, Dahm T (1997) Localization and classification of fracture types in concrete with quantitative acoustic emission measurement techniques. NDT&E International 30:223-230

    Article  Google Scholar 

  • Grosse CU, Reinhardt HW (1999) Schallemissionsquellen automatisch lokalisieren. Materialprüfung 41:342-346

    Google Scholar 

  • Grosse CU (2000) WinPecker - Programm zur vollautomatischen dreidimensionalen Lokalisierung von Schallemissionsquellen. DGZfP Report 72:191-204

    Google Scholar 

  • Grosse CU, Ruck HJ, Bahr G (2001) Analyse von Schallemissionssignalen unter Verwendung der Wavelettransformation, 13. Colloquium AE DGZfP Report 78, pp 41-50

    Google Scholar 

  • Hamstad MA (1994) An examination of piezoelectric polymers as wideband acoustic emission displacement sensors. Progress in AE VII, Jap. Soc. for NDI, pp 79-86

    Google Scholar 

  • Hamstad MA (1997) Improved signal-to-noise wideband acoustic/ultrasonic contact displacement sensors for wood and polymers. Wood and fibre science 29 (3):239-248

    Google Scholar 

  • Hamstad MA (2001) An illustrated overview of the use and value of a wavelet transformation to acoustic emission technology. NIST, Boulder, report

    Google Scholar 

  • Hamstad MA, Fortunko CM (1995) Development of practical wideband highfidelity acoustic emission sensors. Proc. of SPIE Conf. on NDE of Aging Infrastructure 2456, pp 281-288

    Google Scholar 

  • Hatano H, Mori E (1976) Acoustic-emission transducer and its absolute calibration. J. Acoust. Soc. Am. 59(2):344-349

    Article  Google Scholar 

  • Hildyard MW, Milev A, Linzer LM, Roberts MKC, Jager AJ, Spottiswoode SM (2005) PLATMINE 3.7: Assess the hazard posed by dynamic failure of pillars in the back areas of platinum mines. PLATMINE final project report. Under review

    Google Scholar 

  • Hsu NN, Breckenridge FR (1981) Characterization and calibration of acoustic emission sensors. Materials Evaluation 39:60-68

    Google Scholar 

  • Hykes DL, Hedrick WR, Starchman DE (1992) Ultrasound Physics and Instrumentation. Mosby-Year Book, 2. ed.

    Google Scholar 

  • Jost ML, Hermann R (1989) A students guide to and review of moment tensors. Seism. Res. Letters 60:37-57

    Google Scholar 

  • Kaiser J (1950) Untersuchungen über das Auftreten von Geräuschen beim Zugversuch. Thesis, University of Munich, Germany, pp 1-38

    Google Scholar 

  • Kapphahn G (1990) Messtechnische Grundlagen der Schallemissionsanalyse als Prüfverfahren an nichtmetallischen Baustoffen. Thesis, TH Leipzig, Germany

    Google Scholar 

  • Kino GS (1987) Acoustic waves: Devices, Imaging, and analog signal processing. Prentice Hall

    Google Scholar 

  • Köppel S, Vogel T (2000) Localization and identification of cracking mechanisms in reinforced concrete using acoustic emission analysis. Proc. 4. Int. Conf. on Bridge Management, Surrey pp 88-95

    Google Scholar 

  • Köppel S, Grosse CU (2000) Advanced acoustic emission techniques for failure analysis in concrete. Proc. of 15. World Conf. on NDT, Rome, on CD-ROM

    Google Scholar 

  • Köppel S (2002) Schallemissionsanalyse zur Untersuchung von Stahlbetontragwerken. Thesis ETH No. 14490, Swiss Federal Institute of Technology (ETH) Zürich, Switzerland, p 172

    Google Scholar 

  • Krautkrämer J, Krautkrämer H (1986) Werkstoffprüfung mit Ultraschall. Springer, Berlin

    Google Scholar 

  • Labusz JF, Chang HS, Dowding CH, Shah SP (1988) Parametric study of AE location using only four sensors. Rock mechanics and rock engineering 21:139-148

    Article  Google Scholar 

  • Landis EN, Ouyang C, Shah SP (1992) Automated Determination of First P-Wave Arrival and Acoustic Emission Source Location. J. of Acoustic Em. 10(1-2):97-103

    Google Scholar 

  • Landis EN (1993) A quantitative acoustic emission investigation of microfractures in cement based materials. Thesis, Northwestern University, Evanston, USA, p 185

    Google Scholar 

  • Landis EN, Shah SP (1995) Frequency-Dependent Stress Wave Attenuation in Cement-Based Materials. Journal of Engineering Mechanics 121(6):737-743

    Article  Google Scholar 

  • Lawson CH, Hanson RJ (1974) Solving Least Squares Problems, Prentice-Hall, Engelwood Cliffs, New Jersey

    MATH  Google Scholar 

  • Linzer LM (2005) Manuel Rocha Medal Recipient: A relative moment tensor inversion technique applied to seismicity induced by mining. Journal of Rock Mechanics and Rock Engineering 38, No. 2:81–104

    Article  Google Scholar 

  • Lockner AD, Byerlee JD, Kuksenko V, Ponomarev A, Sidrin A (1993) Quasistatic fault growth and shear fracture energy in granite. Nature 350:39–42

    Article  Google Scholar 

  • Lyamshev ML, Stanullo J, Busse G (1995) Thermoacoustic vibrometry. Materialprüfung 37:1-2

    Google Scholar 

  • McCabe WM, Koerner RM, Lord AE (1976) Acoustic emission behavior of concrete laboratory specimens. ACI J. 73:367-371

    Google Scholar 

  • McGarr A (1992) Moment tensors of ten Witwatersrand mine tremors. Pageoph. 139:781–800

    Article  Google Scholar 

  • Miller RK, McIntire P (eds) (1987) Acoustic emission testing. Nondestructive testing handbook, vol.5. American Society for Nondestructive Testing. 2. edition, p 603

    Google Scholar 

  • Napier JAL, Spottiswoode SM, Sellers E, Hildyard MW, Linzer LM (2005) SIMRAC 02-03-01: New criteria for rock mass stability and control using integration of seismicity and numerical modeling. SIMRAC Final Project Report, Department of Minerals and Energy, South Africa. Under review. Downloadable from www.simrac.co.za

    Google Scholar 

  • Ohtsu M (1991) Simplified Moment Tensor Analysis and Unified Decomposition of Acoustic Emission Source: Application to in-Situ Hydrofracturing Test. JGR 96:6211-6221

    Article  Google Scholar 

  • Ohtsu M, Shigeishi M, Iwase H, Koyanagi W (1991) Determination of crack location, type and orientation in concrete structures by acoustic emission. Mag. Conc. Res. 155:127-134

    Article  Google Scholar 

  • Oncescu L, Grosse CU (1998) HYPOAE - A program for the localization of hypocenters of acoustic emissions. Computer Program, Rev.2.1

    Google Scholar 

  • Oncescu MC (1986) Relative seismic moment tensor determination for Vrancea intermediate depth earthquakes. Pure Appl. Geophys. 124:931–940

    Article  Google Scholar 

  • Patton H (1980) Reference point equalisation method for determining the source and path of surface waves. JGR 85:821-848

    Article  Google Scholar 

  • Pazdera L, Smutny J (2001) Using non-traditional tool – discrete wavelet transformation to analysis of acoustic emission signal. Acoustic Emission AE2001, Int. Conf. on Internet, March - September 2001, Brno, Czech republic, <http://cmspro.fme.vutbr.cz/uk/odbory/vav/konf.htm>

    Google Scholar 

  • Proctor TM (1982) Some Details on the NBS Conical Transducer. J. of Acoustic Em. 1(3):173-178

    MathSciNet  Google Scholar 

  • Proctor TM (1986) More Recent Improvements on the NBS Conical Transducer. J. of Acoustic Em. 5(4):134-142

    Google Scholar 

  • Reinhardt HW, Hordijk DA (1989) Cracking and Damage. Mazars J, Bazant ZP (eds), Elsevier, London, pp 3-14

    Google Scholar 

  • Rikitake T, Sato R, Hagiwara Y (1987) Applied mathematics for earth scientists, Mathematical approaches to geophysics. Kluwer Academic Pub., Dordrecht

    Google Scholar 

  • Ruzzante JE, Serrano EP (2000) Estimation of differences in event arrival times through wavelet transform techniques. (on CD-ROM) Proc. 15th World Conference on NDT, Rome

    Google Scholar 

  • Sachse W, Kim KY (1987) Quantitative acoustic emission and failure mechanics of composite materials. Ultrasonics 25:195-203

    Article  Google Scholar 

  • Salamon MDG, Wiebols GA (1974) Digital location of seismic events by an underground network of seismometers using the arrival times of compressional waves. Rock Mech. 6:141-166

    Article  Google Scholar 

  • Sellers EJ, Kataka MO, Linzer, LM (2003) Source parameters of acoustic emission events and scaling with mining-induced seismicity. J. Geophys. Res., 108, B9:2418–2430 Šílený J, Panza GF, Campus P (1992) Waveform inversion for point source moment retrieval with variable hypocentral depth and structural model. Geophys. J. Int. 109:259–274

    Google Scholar 

  • Scruby CB (1985) Quantitative acoustic emission techniques. Nondestr. Test. 8:141-210

    Google Scholar 

  • Shah KR, Labuz JF (1995) Damage mechanism in stressed rock from acoustic emission. J. Geophys. Res., 100:15527–15339

    Article  Google Scholar 

  • Sklarczyk C, Gries H, Waschkies E (1990) Testing during concrete construction. Reinhardt HW (ed), Chapman and Hall, London, pp 297-208

    Google Scholar 

  • Strelitz RA (1980) The fate of the downgoing slab: A study of the moment tensors from body waves of complex deep-focus earthquakes, Phys. Earth. Planet. Int. 21:83–96

    Article  Google Scholar 

  • Udias A, Baumann D (1969) A computer program for focal mechanism determination combining P and S wave data. Bull. Seism. Soc. Am. 59:503–519

    Google Scholar 

  • Vallen H, Forker J (2001) Optimierung der Analyse von Daten der Schallemissionsprüfung eines vorgeschädigten Objekts während dem Bersttest. 13. Kolloquium Schallemission, DGZfP Berichtsband 78:11-21

    Google Scholar 

  • Wald DJ, Kanamori H, Helmberger DV, Heaton TH (1993) Source Study of the 1906 San Francisco Earthquake. Bull. Seism. Soc. Am. 83:981-1019

    Google Scholar 

  • Weiler B, Grosse CU (1995) Calibration of Ultrasonic transducers - a comparative study of different methods. Otto Graf Journal 6:153-167

    Google Scholar 

  • Wood BRA, Harris RW (1982) An evaluation of the breaking pencil lead calibration technique. Jap. Soc. NDI. Progress in acoustic emission VI, Tokyo, pp 423-439.

    Google Scholar 

  • Yoon DJ, Weiss WJ, Shah SP (2000) Assessing damage in corroded reinforced concrete using acoustic emission. J. Eng. Mech. 126(3):273-283

    Google Scholar 

  • Zang A, Wagner FC, Stanchits S, Dresen G, Andresen R, Haidekker MA (1998) Source Analysis of Acoustic Emissions in Granite Cores under Symmetric and Asymmetric Compressive Load. Geophys. J. Int. 135:1113-1130

    Article  Google Scholar 

  • Zhao J, Ma Y, Gao H, Yang J (2000) Denoising Method of AE Signal by Using Wavelet Transform. (on CD-ROM), Proc. of 15th World Conf. on NDT, Rome

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grosse, C., Linzer, L. (2008). Signal-Based AE Analysis. In: Grosse, C., Ohtsu, M. (eds) Acoustic Emission Testing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69972-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69972-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69895-1

  • Online ISBN: 978-3-540-69972-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics