Skip to main content

Game-Theoretic Agent Programming in Golog Under Partial Observability

  • Conference paper
KI 2006: Advances in Artificial Intelligence (KI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4314))

Included in the following conference series:

  • 685 Accesses

Abstract

We present the agent programming language POGTGolog, which integrates explicit agent programming in Golog with game-theoretic multi-agent planning in partially observable stochastic games. It deals with the case of one team of cooperative agents under partial observability, where the agents may have different initial belief states and not necessarily the same rewards. POGTGolog allows for specifying a partial control program in a high-level logical language, which is then completed by an interpreter in an optimal way. To this end, we define a formal semantics of POGTGolog programs in terms of Nash equilibria, and we specify a POGTGolog interpreter that computes one of these Nash equilibria. We illustrate the usefulness of POGTGolog along a rugby scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bacchus, F., Halpern, J.Y., Levesque, H.J.: Reasoning about noisy sensors and effectors in the situation calculus. Artif. Intell. 111, 171–208 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Boutilier, C., Reiter, R., Price, B.: Symbolic dynamic programming for first-order MDPs. In: Proceedings IJCAI-2001, pp. 690–700 (2001)

    Google Scholar 

  3. Boutilier, C., et al.: Decision-theoretic, high-level agent programming in the situation calculus. In: Proceedings AAAI-2000, pp. 355–362 (2000)

    Google Scholar 

  4. Ferrein, A., Fritz, C., Lakemeyer, G.: Using Golog for deliberation and team coordination in robotic soccer. Künstliche Intelligenz 1, 24–43 (2005)

    Google Scholar 

  5. Finzi, A., Lukasiewicz, T.: Game-theoretic agent programming in Golog. In: Proceedings ECAI-2004, pp. 23–27 (2004)

    Google Scholar 

  6. Finzi, A., Pirri, F.: Combining probabilities, failures and safety in robot control. In: Proceedings IJCAI-2001, pp. 1331–1336 (2001)

    Google Scholar 

  7. Goldman, C.V., Zilberstein, S.: Decentralized control of cooperative systems: Categorization and complexity analysis. J. Artif. Intell. Res. 22, 143–174 (2004)

    MATH  MathSciNet  Google Scholar 

  8. Guestrin, C., et al.: Generalizing plans to new environments in relational MDPs. In: Proceedings IJCAI-2003, pp. 1003–1010 (2003)

    Google Scholar 

  9. Hansen, E.A., Bernstein, D.S., Zilberstein, S.: Dynamic programming for partially observable stochastic games. In: Proceedings AAAI-2004, pp. 709–715 (2004)

    Google Scholar 

  10. Pack Kaelbling, L., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artif. Intell. 101(1-2), 99–134 (1998)

    Article  MATH  Google Scholar 

  11. Littman, M.L.: Markov games as a framework for multi-agent reinforcement learning. In: Proceedings ICML-1994, pp. 157–163 (1994)

    Google Scholar 

  12. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of Artificial Intelligence. In: Machine Intelligence 4, pp. 463–502. Edinburgh University Press, Edinburgh (1969)

    Google Scholar 

  13. Nair, R., et al.: Taming decentralized POMDPs: Towards efficient policy computation for multiagent settings. In: Proceedings IJCAI-2003, pp. 705–711 (2003)

    Google Scholar 

  14. Owen, G.: Game Theory, 2nd edn. Academic Press, London (1982)

    MATH  Google Scholar 

  15. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, Chichester (1994)

    MATH  Google Scholar 

  16. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  17. van der Wal, J.: Stochastic Dynamic Programming. Mathematical Centre Tracts, vol. 139. Morgan Kaufmann, San Francisco (1981)

    MATH  Google Scholar 

  18. von Neumann, J., Morgenstern, O.: The Theory of Games and Economic Behavior. Princeton University Press, Princeton (1947)

    Google Scholar 

  19. Yoon, S.W., Fern, A., Givan, B.: Inductive policy selection for first-order MDPs. In: Proceedings UAI-2002, pp. 569–576 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christian Freksa Michael Kohlhase Kerstin Schill

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Finzi, A., Lukasiewicz, T. (2007). Game-Theoretic Agent Programming in Golog Under Partial Observability. In: Freksa, C., Kohlhase, M., Schill, K. (eds) KI 2006: Advances in Artificial Intelligence. KI 2006. Lecture Notes in Computer Science(), vol 4314. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69912-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69912-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69911-8

  • Online ISBN: 978-3-540-69912-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics