Skip to main content

Neural Control of Ocular Blood Flow

  • Chapter
  • First Online:
Ocular Blood Flow

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe S, Karita K, Izumi H et al (1995) Increased and decreased choroidal blood flow elicited by cervical sympathetic nerve stimulation in the cat. Jpn J Physiol 45:347–353

    PubMed  CAS  Google Scholar 

  2. Agassandian K, Fazan VP, Adanina V et al (2002) Direct projections from the cardiovascular nucleus tractus solitarii to pontine preganglionic parasympathetic neurons: a link to cerebrovascular regulation. J Comp Neurol 452:242–254

    PubMed  Google Scholar 

  3. Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Alm A, Bill A (1970) Blood flow and oxygen extraction in the cat uvea at normal and high intraocular pressures. Acta Physiol Scand 80:19–28

    PubMed  CAS  Google Scholar 

  5. Alm A, Bill A (1972) The oxygen supply to the retina. II. Effects of high intraocular pressure and of increased arterial carbon dioxide tension on uveal and retinal blood flow in cats. A study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Acta Physiol Scand 84:306–319

    PubMed  CAS  Google Scholar 

  6. Alm A, Bill A (1973) The effect of stimulation of the cervical sympathetic chain on retinal oxygen tension and on uveal, retinal and cerebral blood flow in cats. Acta Physiol Scand 88:84–94

    PubMed  CAS  Google Scholar 

  7. Alm A, Bill A, Young FA (1973) The effects of pilocarpine and neostigmine on the blood flow through the anterior uvea in monkeys. A study with radioactively labelled microspheres. Exp Eye Res 15:31–36

    PubMed  CAS  Google Scholar 

  8. Alm A, Stjernschantz J, Bill A (1976) Effects of oculomotor nerve stimulation on ocular blood flow in rabbits after sympathetic denervation. Exp Eye Res 23:609–613

    PubMed  CAS  Google Scholar 

  9. Alm A (1977) The effect of sympathetic stimulation on blood flow through t, e uvea, retina and optic nerve in monkeys (Macacca irus). Exp Eye Res 25:19–24

    PubMed  CAS  Google Scholar 

  10. Alm A (1992) Ocular circulation. In: Hart WM (ed) Adler’s physiology of the eye: clinical application. Mosby, St Louis, pp 198–227

    Google Scholar 

  11. Alm P, Uvelius B, Ekstrom J et al (1995) Nitric oxide synthase-containing neurons in rat parasympathetic, sympathetic and sensory ganglia: a comparative study. Histochem J 27:819–831

    PubMed  CAS  Google Scholar 

  12. Almegard B, Andersson SE (1990) Outflow facility in the monkey eye: effects of calcitonin gene-related peptide, cholecystokinin, galanin, substance P and capsaicin. Exp Eye Res 51:685–689

    PubMed  CAS  Google Scholar 

  13. Andersson SE, Bill A (1989) Effects of intravenous calcitonin gene-related peptide (CGRP) and substance P on the blood-aqueous barrier in the rabbit. Acta Physiol Scand 135:349–357

    PubMed  CAS  Google Scholar 

  14. Arends JJ, Wild JM, Zeigler HP (1988) Projections of the nucleus of the tractus solitarius in the pigeon (Columba livia). J Comp Neurol 278:405–429

    PubMed  CAS  Google Scholar 

  15. Ayajiki K, Fujioka H, Okamura T et al (2001) Relatively selective neuronal nitric oxide synthase inhibition by 7-nitroindazole in monkey isolated cerebral arteries. Eur J Pharmacol 423:179–183

    PubMed  CAS  Google Scholar 

  16. Badoer E, Merolli J (1998) Neurons in the hypothalamic paraventricular nucleus that project to the rostral ventrolateral medulla are activated by haemorrhage. Brain Res 791:317–320

    PubMed  CAS  Google Scholar 

  17. Bakken IJ, Vincent MB, Sjaavaag I et al (1995) Vasodilation in porcine ophthalmic artery: peptide interaction with acetylcholine and endothelial dependence. Neuropeptides 29:69–75

    PubMed  CAS  Google Scholar 

  18. Baljet B, VanderWerf F (2005) Connections between the lacrimal gland and sensory trigeminal neurons: a WGA/HRP study in the cynomolgous monkey. J Anat 206:257–263

    PubMed  PubMed Central  Google Scholar 

  19. Beckers HJ, Klooster J, Vrensen GF et al (1993) Facial parasympathetic innervation of the rat choroid, lacrimal glands and ciliary ganglion. An ultrastructural pterygopalatine tracing and immunohistochemical study. Ophthalmic Res 25:319–330

    PubMed  CAS  Google Scholar 

  20. Beckers HJ, Klooster J, Vrensen GF et al (1993) Substance P in rat corneal and iridal nerves: an ultrastructural immunohistochemical study. Ophthalmic Res 25:192–200

    PubMed  CAS  Google Scholar 

  21. Behar-Cohen FF, Goureau O, D’Hermies F et al (1996) Decreased intraocular pressure induced by nitric oxide donors is correlated to nitrite production in the rabbit eye. Invest Ophthalmol Vis Sci 37:1711–1715

    PubMed  CAS  Google Scholar 

  22. Belmonte C, Bartels SP, Liu JH et al (1987) Effects of stimulation of the ocular sympathetic nerves on IOP and aqueous humor flow. Invest Ophthalmol Vis Sci 28:1649–1654

    PubMed  CAS  Google Scholar 

  23. Belmonte C, Garcia-Hirschfeld J, Gallar J (1997) Neurobiology of ocular pain. Prog Retin Eye Res 16:117–156

    Google Scholar 

  24. Benedito S, Prieto D, Nielsen PJ et al (1991) Role of the endothelium in acetylcholine-induced relaxation and spontaneous tone of bovine isolated retinal small arteries. Exp Eye Res 52:575–579

    PubMed  CAS  Google Scholar 

  25. Bergua A, Jünemann A, Naumann GO (1993) NADPH-D-reaktive chorioidale Ganglienzellen beim Menschen. Klin Monatsbl Augenheilkd 203:77–82

    PubMed  CAS  Google Scholar 

  26. Bergua A, Mayer B, Neuhuber WL (1996) Nitrergic and VIPergic neurons in the choroid and ciliary ganglion of the duck Anis carina. Anat Embryol (Berl) 193:239–248

    CAS  Google Scholar 

  27. Bergua A, Schrodl F, Neuhuber WL (2003) Vasoactive intestinal and calcitonin gene-related peptides, tyrosine hydroxylase and nitrergic markers in the innervation of the rat central retinal artery. Exp Eye Res 77:367–374

    PubMed  CAS  Google Scholar 

  28. Berk ML, Smith SE, Mullins LA (1993) Distribution, parabrachial region projection, and coexistence of neuropeptide and catecholamine cells of the nucleus of the solitary tract in the pigeon. J Comp Neurol 327:416–441

    PubMed  CAS  Google Scholar 

  29. Bill A (1962) Autonomic nervous control of uveal blood flow. Acta Physiol Scand 56:70–81

    PubMed  CAS  Google Scholar 

  30. Bill A, Linder J (1976) Sympathetic control of cerebral blood flow in acute arterial hypertension. Acta Physiol Scand 96:114–121

    PubMed  CAS  Google Scholar 

  31. Bill A, Stjernschantz J, Alm A (1976) Effects of hexamethonium, biperiden and phentolamine on the vasoconstrictive effects of oculomotor nerve stimulation in rabbits. Exp Eye Res 23:615–622

    PubMed  CAS  Google Scholar 

  32. Bill A, Sperber G, Ujiie K (1983) Physiology of the choroidal vascular bed. Int Ophthalmol 6:101–107

    PubMed  CAS  Google Scholar 

  33. Bill A (1985) Some aspects of the ocular circulation. Friedenwald lecture. Invest Ophthalmol Vis Sci 26:410–424

    PubMed  CAS  Google Scholar 

  34. Bill A, Nilsson SF (1985) Control of ocular blood flow. J Cardiovasc Pharmacol 7(Suppl 3):S96–S102

    PubMed  CAS  Google Scholar 

  35. Bill A, Sperber GO (1990) Control of retinal and choroidal blood flow. Eye (Lond) 4(Pt 2):319–325

    Google Scholar 

  36. Bill A (1991) The 1990 Endre Balazs Lecture. Effects of some neuropeptides on the uvea. Exp Eye Res 53:3–11

    CAS  Google Scholar 

  37. Bill A (1984) The circulation in the eye. In: Renkin EM, Michel CC (eds) Handbook of physiology: the cardiovascular system IV: microcirculation part 2. Waverly Press, Baltimore, pp 1001–1035

    Google Scholar 

  38. Birch DG (1987) Diurnal rhythm in the human rod ERG: retinitis pigmentosa. Invest Ophthalmol Vis Sci 28:2042–2048

    PubMed  CAS  Google Scholar 

  39. Bjorklund H, Hokfelt T, Goldstein M et al (1985) Appearance of the noradrenergic markers tyrosine hydroxylase and neuropeptide Y in cholinergic nerves of the iris following sympathectomy. J Neurosci 5:1633–1640

    PubMed  CAS  Google Scholar 

  40. Blacharski P (1988) Pathological progressive myopia. In: Newsome DA (ed) Retinal dystrophies and degenerations. Raven Press, New York, pp 257–269

    Google Scholar 

  41. Bok D (1985) Retinal photoreceptor-pigment epithelium interactions. Friedenwald lecture. Invest Ophthalmol Vis Sci 26:1659–1694

    PubMed  CAS  Google Scholar 

  42. Boker T, Fang T, Steinmetz R (1993) Refractive error and choroidal perfusion characteristics in patients with choroidal neovascularization and age-related macular degeneration. Ger J Ophthalmol 2:10–13

    PubMed  CAS  Google Scholar 

  43. Boussery K, Delaey C, Van de Voorde J (2005) The vasorelaxing effect of CGRP and natriuretic peptides in isolated bovine retinal arteries. Invest Ophthalmol Vis Sci 46:1420–1427

    PubMed  Google Scholar 

  44. Braakman R, van der Linden P, Sipkema P (1999) Effects of topical beta-blockers on the diameter of the isolated porcine short posterior ciliary artery. Invest Ophthalmol Vis Sci 40:370–377

    PubMed  CAS  Google Scholar 

  45. Braun RD, Linsenmeier RA, Goldstick TK (1995) Oxygen consumption in the inner and outer retina of the cat. Invest Ophthalmol Vis Sci 36:542–554

    PubMed  CAS  Google Scholar 

  46. Buijs RM, la Fleur SE, Wortel J et al (2003) The suprachiasmatic nucleus balances sympathetic and parasympathetic output to peripheral organs through separate preautonomic neurons. J Comp Neurol 464:36–48

    PubMed  Google Scholar 

  47. Butler JM, Ruskell GL, Cole DF et al (1984) Effects of VIIth (facial) nerve degeneration on vasoactive intestinal polypeptide and substance P levels in ocular and orbital tissues of the rabbit. Exp Eye Res 39:523–532

    PubMed  CAS  Google Scholar 

  48. Calarescu FR, Ciriello J, Caverson MM et al (1984) Functional neuroanatomy of ventral pathways controlling the circulation. In: Kochen TA, Guthrie CP (eds) Hypertension and the brain. Futura Publications, New York, pp 3–21

    PubMed  Google Scholar 

  49. Cantwell EL, Cassone VM (2006) Chicken suprachiasmatic nuclei: II. Autoradiographic and immunohistochemical analysis. J Comp Neurol 499:442–457

    PubMed  Google Scholar 

  50. Cantwell EL, Cassone VM (2006) Chicken suprachiasmatic nuclei: I. Efferent and afferent connections. J Comp Neurol 496:97–120

    PubMed  PubMed Central  Google Scholar 

  51. Chamot SR, Movaffaghy A, Petrig BL et al (2000) Iris blood flow response to acute decreases in ocular perfusion pressure: a laser Doppler flowmetry study in humans. Exp Eye Res 70:107–112

    PubMed  CAS  Google Scholar 

  52. Chou P, Lu DW, Chen JT (2000) Bilateral superior cervical ganglionectomy increases choroidal blood flow in the rabbit. Ophthalmologica 214:421–425

    PubMed  CAS  Google Scholar 

  53. Chou PI, Lu DW, Chen JT (2001) Adrenergic supersensitivity of rabbit choroidal blood vessels after sympathetic denervation. Curr Eye Res 23:352–356

    PubMed  CAS  Google Scholar 

  54. Chou PI, Lu DW, Chen JT (2002) Effect of sympathetic denervation on rabbit choroidal blood flow. Ophthalmologica 216:60–64

    PubMed  Google Scholar 

  55. Chung CW, Tigges M, Stone RA (1996) Peptidergic innervation of the primate meibomian gland. Invest Ophthalmol Vis Sci 37:238–245

    PubMed  CAS  Google Scholar 

  56. Ciriello J (1983) Brainstem projections of aortic baroreceptor afferent fibers in the rat. Neurosci Lett 36:37–42

    PubMed  CAS  Google Scholar 

  57. Colasanti BK, Powell SR (1985) Effect of delta 9-tetrahydrocannabinol on intraocular pressure after removal of autonomic input. J Ocul Pharmacol 1:47–57

    PubMed  CAS  Google Scholar 

  58. Collier RH (1967) Experimental embolic ischemia of the choroid. Arch Ophthalmol 77:683–692

    PubMed  CAS  Google Scholar 

  59. Contreras RJ, Gomez MM, Norgren R (1980) Central origins of cranial nerve parasympathetic neurons in the rat. J Comp Neurol 190:373–394

    PubMed  CAS  Google Scholar 

  60. Corvetti G, Pignocchino P, Sisto Daneo L (1988) Distribution and development of substance P immunoreactive axons in the chick cornea and uvea. Basic Appl Histochem 32:187–192

    PubMed  CAS  Google Scholar 

  61. Cringle SJ, Yu DY, Alder V et al (1999) Light and choroidal PO2 modulation of intraretinal oxygen levels in an avascular retina. Invest Ophthalmol Vis Sci 40:2307–2313

    PubMed  CAS  Google Scholar 

  62. Cuthbertson S, White J, Fitzgerald ME et al (1996) Distribution within the choroid of cholinergic nerve fibers from the ciliary ganglion in pigeons. Vision Res 36:775–786

    PubMed  CAS  Google Scholar 

  63. Cuthbertson S, Jackson B, Toledo C et al (1997) Innervation of orbital and choroidal blood vessels by the pterygopalatine ganglion in pigeons. J Comp Neurol 386:422–442

    PubMed  CAS  Google Scholar 

  64. Cuthbertson S, Zagvazdin YS, Kimble TD et al (1999) Preganglionic endings from nucleus of Edinger-Westphal in pigeon ciliary ganglion contain neuronal nitric oxide synthase. Vis Neurosci 16:819–834

    PubMed  CAS  Google Scholar 

  65. Cuthbertson S, LeDoux MS, Jones S et al (2003) Localization of preganglionic neurons that innervate choroidal neurons of pterygopalatine ganglion. Invest Ophthalmol Vis Sci 44:3713–3724

    PubMed  Google Scholar 

  66. Dartt DA, Baker AK, Vaillant C et al (1984) Vasoactive intestinal polypeptide stimulation of protein secretion from rat lacrimal gland acini. Am J Physiol 247:G502–G509

    PubMed  CAS  Google Scholar 

  67. Dartt DA, McCarthy DM, Mercer HJ et al (1995) Localization of nerves adjacent to goblet cells in rat conjunctiva. Curr Eye Res 14:993–1000

    PubMed  CAS  Google Scholar 

  68. Denis P, Fardin V, Nordmann JP et al (1991) Localization and characterization of substance P binding sites in rat and rabbit eyes. Invest Ophthalmol Vis Sci 32:1894–1902

    PubMed  CAS  Google Scholar 

  69. Deussen A, Sonntag M, Vogel R (1993) L-arginine-derived nitric oxide: a major determinant of uveal blood flow. Exp Eye Res 57:129–134

    PubMed  CAS  Google Scholar 

  70. Diebold Y, Ríos JD, Hodges RR, Rawe I, Dartt DA (2001) Presence of nerves and their receptors in mouse and human conjunctival goblet cells. Invest Ophthalmol Vis Sci 42:2270–2282

    PubMed  CAS  Google Scholar 

  71. Ding C, Walcott B, Keyser KT (2001) Neuronal nitric oxide synthase and the autonomic innervation of the mouse lacrimal gland. Invest Ophthalmol Vis Sci 42:2789–2794

    PubMed  CAS  Google Scholar 

  72. Ding C, Walcott B, Keyser KT (2003) Sympathetic neural control of the mouse lacrimal gland. Invest Ophthalmol Vis Sci 44:1513–1520

    PubMed  Google Scholar 

  73. Ehinger B (1966) Adrenergic nerves to the eye and to related structures in man and the cynomolgus monkey. Invest Ophthalmol 5:42–52

    Google Scholar 

  74. Ehinger B, Sundler F, Tervo K et al (1983) Substance P fibres in the anterior segment of the rabbit eye. Acta Physiol Scand 118:215–218

    PubMed  CAS  Google Scholar 

  75. Elsas T, Edvinsson L, Sundler F et al (1994) Neuronal pathways to the rat conjunctiva revealed by retrograde tracing and immunocytochemistry. Exp Eye Res 58:117–126

    PubMed  CAS  Google Scholar 

  76. Elsas T, Uddman R, Sundler F (1996) Vasoactive intestinal peptide- and nitric oxide synthase-containing nerve fibers in the rat ophthalmic artery have different origins. Graefes Arch Clin Exp Ophthalmol 234:125–130

    PubMed  CAS  Google Scholar 

  77. Erickson KA, Schroeder A (2000) Direct effects of muscarinic agents on the outflow pathways in human eyes. Invest Ophthalmol Vis Sci 41:1743–1748

    PubMed  CAS  Google Scholar 

  78. Erickson-Lamy KA, Kaufman PL (1988) Effect of cholinergic drugs on outflow facility after ciliary ganglionectomy. Invest Ophthalmol Vis Sci 29:491–494

    PubMed  CAS  Google Scholar 

  79. Ernest JT (1977) The effect of systolic hypertension on rhesus monkey eyes after ocular sympathectomy. Am J Ophthalmol 84:341–344

    PubMed  CAS  Google Scholar 

  80. Falsini B, Riva CE, Logean E (2002) Flicker-evoked changes in human optic nerve blood flow: relationship with retinal neural activity. Invest Ophthalmol Vis Sci 43:2309–2316

    PubMed  Google Scholar 

  81. Fazekas A, Gazelius B, Edwall B et al (1987) VIP and noncholinergic vasodilatation in rabbit submandibular gland. Peptides 8:13–20

    PubMed  CAS  Google Scholar 

  82. Ferrari-Dileo G, Davis EB, Anderson DR (1989) Biochemical evidence for cholinergic activity in retinal blood vessels. Invest Ophthalmol Vis Sci 30:473–477

    PubMed  CAS  Google Scholar 

  83. Filosa JA, Bonev AD, Straub SV et al (2006) Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat Neurosci 9:1397–1403

    PubMed  CAS  Google Scholar 

  84. Fischer AJ, McKinnon LA, Nathanson NM et al (1998) Identification and localization of muscarinic acetylcholine receptors in the ocular tissues of the chick. J Comp Neurol 392:273–284

    PubMed  CAS  Google Scholar 

  85. Fischer AJ, Stell WK (1999) Nitric oxide synthase-containing cells in the retina, pigmented epithelium, choroid, and sclera of the chick eye. J Comp Neurol 405:1–14

    PubMed  CAS  Google Scholar 

  86. Fite KV (1985) Pretectal and accessory optic visual nuclei of fish, amphibia, and reptiles: theme and variations. Brain Behav Evol 26:71–90

    PubMed  CAS  Google Scholar 

  87. Fitzgerald ME, Vana BA, Reiner A (1990) Evidence for retinal pathology following interruption of neural regulation of choroidal blood flow: Muller cells express GFAP following lesions of the nucleus of Edinger-Westphal in pigeons. Curr Eye Res 9:583–598

    PubMed  CAS  Google Scholar 

  88. Fitzgerald ME, Vana BA, Reiner A (1990) Control of choroidal blood flow by the nucleus of Edinger-Westphal in pigeons: a laser Doppler study. Invest Ophthalmol Vis Sci 31:2483–2492

    PubMed  CAS  Google Scholar 

  89. Fitzgerald ME, Caldwell RB, Reiner A (1992) Vasoactive intestinal polypeptide-containing nerve fibers are increased in abundance in the choroid of dystrophic RCS rats. Curr Eye Res 11:501–515

    PubMed  CAS  Google Scholar 

  90. Fitzgerald ME, Gamlin PD, Zagvazdin Y et al (1996) Central neural circuits for the light-mediated reflexive control of choroidal blood flow in the pigeon eye: a laser Doppler study. Vis Neurosci 13:655–669

    PubMed  CAS  Google Scholar 

  91. Fitzgerald ME, Tolley E, Frase S et al (2001) Functional and morphological assessment of age-related changes in the choroid and outer retina in pigeons. Vis Neurosci 18:299–317

    PubMed  CAS  Google Scholar 

  92. Fitzgerald ME, Wildsoet CF, Reiner A (2002) Temporal relationship of choroidal blood flow and thickness changes during recovery from form deprivation myopia in chicks. Exp Eye Res 74:561–570

    PubMed  CAS  Google Scholar 

  93. Fitzgerald ME, Tolley E, Jackson B et al (2005) Anatomical and functional evidence for progressive age-related decline in parasympathetic control of choroidal blood flow in pigeons. Exp Eye Res 81:478–491

    PubMed  CAS  Google Scholar 

  94. Flügel C, Tamm ER, Mayer B et al (1994) Species differences in choroidal vasodilative innervation: evidence for specific intrinsic nitrergic and VIP-positive neurons in the human eye. Invest Ophthalmol Vis Sci 35:592–599

    PubMed  Google Scholar 

  95. Flügel-Koch C, Kaufman P, Lütjen-Drecoll E (1994) Association of a choroidal ganglion cell plexus with the fovea centralis. Invest Ophthalmol Vis Sci 35:4268–4272

    PubMed  Google Scholar 

  96. Frank RN (1988) Studies in diabetic retinopathy. In: Tso MOM (ed) Retinal disease: biomedical foundations & clinical management. Lippincott Co., Philadelphia, pp 165–180

    Google Scholar 

  97. Friedman E (1970) Choroidal blood flow. Pressure-flow relationships. Arch Ophthalmol 83:95–99

    PubMed  CAS  Google Scholar 

  98. Friedman E, Ivry E, Glynn R et al (1989) Increased scleral rigidity and age-related macular degeneration. Ophthalmology 196:104–108

    Google Scholar 

  99. Friedman E, Krupsky S, Lane AM et al (1995) Ocular blood flow velocity in age-related macular degeneration. Ophthalmology 102:640–646

    PubMed  CAS  Google Scholar 

  100. Fuchsjäger-Mayrl G, Polska E, Malec M et al (2001) Unilateral light–dark transitions affect choroidal blood flow in both eyes. Vision Res 41:2919–2924

    PubMed  Google Scholar 

  101. Fuchsjäger-Mayrl G, Luksch A, Malec M et al (2003) Role of endothelin-1 in choroidal blood flow regulation during isometric exercise in healthy humans. Invest Ophthalmol Vis Sci 44:728–733

    PubMed  Google Scholar 

  102. Gabelt BT, Crawford K, Kaufman PL (1991) Outflow facility and its response to pilocarpine decline in aging rhesus monkeys. Arch Ophthalmol 109:879–882

    PubMed  CAS  Google Scholar 

  103. Gallar J, Acosta MC, Belmonte C (2003) Activation of scleral cold thermoreceptors by temperature and blood flow changes. Invest Ophthalmol Vis Sci 44:697–705

    PubMed  CAS  Google Scholar 

  104. Gamlin PD, Reiner A, Karten HJ (1982) Substance P-containing neurons of the avian suprachiasmatic nucleus project directly to the nucleus of Edinger-Westphal. Proc Natl Acad Sci USA 79:3891–3895

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Gamlin PD, Reiner A, Erichsen JT et al (1984) The neural substrate for the pupillary light reflex in the pigeon (Columba livia). J Comp Neurol 226:523–543

    PubMed  CAS  Google Scholar 

  106. Gamlin PD, Reiner A (1991) The Edinger-Westphal nucleus: sources of input influencing accommodation, pupilloconstriction, and choroidal blood flow. J Comp Neurol 306:425–438

    PubMed  CAS  Google Scholar 

  107. Gamlin PDR (2000) Functions of the Edinger-Westphal Nucleus. In: Burnstock G, Sillito AM (eds) Nervous control of the eye. Harwood Academic Publishers, Newark, pp 117–154

    Google Scholar 

  108. Ganchrow D, Gentle MJ, Ganchrow JR (1987) Central distribution and efferent origins of facial nerve branches in the chicken. Brain Res Bull 19:231–238

    PubMed  CAS  Google Scholar 

  109. Garhöfer G, Zawinka C, Resch H et al (2004) Diffuse luminance flicker increases blood flow in major retinal arteries and veins. Vision Res 44:833–838

    PubMed  Google Scholar 

  110. Gaudric A, Coscas G, Bird AC (1982) Choroidal ischemia. Am J Ophthalmol 94:489–498

    PubMed  CAS  Google Scholar 

  111. Gay AJ, Goldor H, Smith M (1964) Chorioretinal vascular occlusions with latex spheres. Invest Ophthalmol 3:647–656

    PubMed  CAS  Google Scholar 

  112. Geiser MH, Riva CE, Dorner GT et al (2000) Response of choroidal blood flow in the foveal region to hyperoxia and hyperoxia-hypercapnia. Curr Eye Res 21:669–676

    PubMed  CAS  Google Scholar 

  113. Gherezghiher T, Hey JA, Koss MC (1990) Parasympathetic nervous control of intraocular pressure. Exp Eye Res 50:457–462

    PubMed  CAS  Google Scholar 

  114. Gherezghiher T, Okubo H, Koss MC (1991) Choroidal and ciliary body blood flow analysis: application of laser Doppler flowmetry in experimental animals. Exp Eye Res 53:151–156

    PubMed  CAS  Google Scholar 

  115. Gidday JM, Zhu Y (1995) Nitric oxide does not mediate autoregulation of retinal blood flow in newborn pig. Am J Physiol 269:H1065–H1072

    PubMed  CAS  Google Scholar 

  116. Godino A, Giusti-Paiva A, Antunes-Rodrigues J et al (2005) Neurochemical brain groups activated after an isotonic blood volume expansion in rats. Neuroscience 133:493–505

    PubMed  CAS  Google Scholar 

  117. Golanov EV, Christensen JR, Reis DJ (2001) Neurons of a limited subthalamic area mediate elevations in cortical cerebral blood flow evoked by hypoxia and excitation of neurons of the rostral ventrolateral medulla. J Neurosci 21:4032–4041

    PubMed  CAS  Google Scholar 

  118. Goldstein DS, Kopin IJ (1990) The autonomic nervous system and catecholamines in normal blood pressure control and in hypertension. In: Laragh JH, Brenner BM (eds) Hypertension: pathophysiology, diagnosis, and management. Raven Press, New York, pp 711–747

    Google Scholar 

  119. Goldstein IM, Ostwald P, Roth S (1996) Nitric oxide: a review of its role in retinal function and disease. Vision Res 36:2979–2994

    PubMed  CAS  Google Scholar 

  120. Goto W, Oku H, Okuno T et al (2003) Amelioration by topical bunazosin hydrochloride of the impairment in ocular blood flow caused by nitric oxide synthase inhibition in rabbits. J Ocul Pharmacol Ther 19:63–73

    PubMed  CAS  Google Scholar 

  121. Gotoh F, Tanaka K (1988) Regulation of cerebral blood flow. In: Bruyn GW, Vinken PJ (eds) Handbook of clinical neurology. Elsevier, Amsterdam, pp 47–77

    Google Scholar 

  122. Gottanka J, Kirch W, Tamm ER (2005) The origin of extrinsic nitrergic axons supplying the human eye. J Anat 206:225–229

    PubMed  PubMed Central  Google Scholar 

  123. Grunwald JE, Riva CE, Kozart DM (1988) Retinal circulation during a spontaneous rise of intraocular pressure. Br J Ophthalmol 72:754–758

    PubMed  CAS  PubMed Central  Google Scholar 

  124. Grunwald JE (1991) Effect of two weeks of timolol maleate treatment on the normal retinal circulation. Invest Ophthalmol Vis Sci 32:39–45

    PubMed  CAS  Google Scholar 

  125. Grunwald JE, Hariprasad SM, DuPont J (1998) Effect of aging on foveolar choroidal circulation. Arch Ophthalmol 116:150–154

    PubMed  CAS  Google Scholar 

  126. Grunwald JE, Hariprasad SM, DuPont J et al (1998) Foveolar choroidal blood flow in age-related macular degeneration. Invest Ophthalmol Vis Sci 39:385–390

    PubMed  CAS  Google Scholar 

  127. Grunwald JE, Piltz J, Hariprasad SM et al (1998) Optic nerve and choroidal circulation in glaucoma. Invest Ophthalmol Vis Sci 39:2329–2336

    PubMed  CAS  Google Scholar 

  128. Grunwald JE, Iannaccone A, DuPont J (1999) Effect of isosorbide mononitrate on the human optic nerve and choroidal circulations. Br J Ophthalmol 83:162–167

    PubMed  CAS  PubMed Central  Google Scholar 

  129. Guglielmone R, Cantino D (1982) Autonomic innervation of the ocular choroid membrane in the chicken: a fluorescence-histochemical and electron-microscopic study. Cell Tissue Res 222:417–431

    PubMed  CAS  Google Scholar 

  130. Gupta N, Drance SM, McAllister R et al (1994) Localization of M3 muscarinic receptor subtype and mRNA in the human eye. Ophthalmic Res 26:207–213

    PubMed  CAS  Google Scholar 

  131. Gupta N, McAllister R, Drance SM et al (1994) Muscarinic receptor M1 and M2 subtypes in the human eye: QNB, pirenzipine, oxotremorine, and AFDX-116 in vitro autoradiography. Br J Ophthalmol 78:555–559

    PubMed  CAS  PubMed Central  Google Scholar 

  132. Haefliger IO, Flammer J, Lüscher TF (1993) Heterogeneity of endothelium-dependent regulation in ophthalmic and ciliary arteries. Invest Ophthalmol Vis Sci 34:1722–1730

    PubMed  CAS  Google Scholar 

  133. Haefliger IO, Flammer J, Beny JL et al (2001) Endothelium-dependent vasoactive modulation in the ophthalmic circulation. Prog Retin Eye Res 20:209–225

    PubMed  CAS  Google Scholar 

  134. Hara H, Hamill GS, Jacobowitz DM (1985) Origin of cholinergic nerves to the rat major cerebral arteries: coexistence with vasoactive intestinal polypeptide. Brain Res Bull 14:179–188

    PubMed  CAS  Google Scholar 

  135. Hardy P, Varma DR, Chemtob S (1997) Control of cerebral and ocular blood flow autoregulation in neonates. Pediatr Clin North Am 44:137–152

    PubMed  CAS  Google Scholar 

  136. Hawkins BS, Bird A, Klein R et al (1999) Epidemiology of age-related macular degeneration. Mol Vis 5:26

    PubMed  CAS  Google Scholar 

  137. Hayreh SS (2001) Blood flow in the optic nerve head and factors that may influence it. Prog Retin Eye Res 20:595–624

    PubMed  CAS  Google Scholar 

  138. Heino P, Oksala O, Luhtala J et al (1995) Localization of calcitonin gene-related peptide binding sites in the eye of different species. Curr Eye Res 14:783–790

    PubMed  CAS  Google Scholar 

  139. Herbert H, Moga MM, Saper CB (1990) Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J Comp Neurol 293:540–580

    PubMed  CAS  Google Scholar 

  140. Hermes ML, Buijs RM, Renaud LP (1996) Electrophysiology of suprachiasmatic nucleus projections to hypothalamic paraventricular nucleus neurons. Prog Brain Res 111:241–252

    PubMed  CAS  Google Scholar 

  141. Herron WL, Riegel BW, Myers OE et al (1969) Retinal dystrophy in the rat – a pigment epithelial disease. Invest Ophthalmol 8:595–604

    PubMed  CAS  Google Scholar 

  142. Hill CE, Gould DJ (1995) Modulation of sympathetic vasoconstriction by sensory nerves and nitric oxide in rat irideal arterioles. J Pharmacol Exp Ther 273:918–926

    PubMed  CAS  Google Scholar 

  143. Hirai R, Tamamaki N, Hukami K et al (1994) Ultrastructural analysis of tyrosine hydroxylase-, substance P-, and calcitonin gene-related peptide-immunoreactive nerve fibers in the rat iris. Ophthalmic Res 26:169–180

    PubMed  CAS  Google Scholar 

  144. Hodos W (1991). Animal models of life-span development. In The Changing Visual System: Maturation and Aging in Central Nervous System, ed. Bagnoli, P. & Hodos, W., pp. 21–32. New York: Plenum Press

    PubMed  CAS  Google Scholar 

  145. Hodos W, Miller RF, Ghim MM et al (1998) Visual acuity losses in pigeons with lesions of the nucleus of Edinger-Westphal that disrupt the adaptive regulation of choroidal blood flow. Vis Neurosci 15:273–287

    PubMed  CAS  Google Scholar 

  146. Horiguchi M, Miyake Y (1991) Effect of temperature on electroretinograph readings during closed vitrectomy in humans. Arch Ophthalmol 109:1127–1129

    PubMed  CAS  Google Scholar 

  147. Hosoya Y, Matsushita M, Sugiura Y (1984) Hypothalamic descending afferents to cells of origin of the greater petrosal nerve in the rat, as revealed by a combination of retrograde HRP and anterograde autoradiographic techniques. Brain Res 290:141–145

    PubMed  CAS  Google Scholar 

  148. Hoste AM, Andries LJ (1991) Contractile responses of isolated bovine retinal microarteries to acetylcholine. Invest Ophthalmol Vis Sci 32:1996–2005

    PubMed  CAS  Google Scholar 

  149. Huemer KH, Garhofer G, Aggermann T et al (2007) Role of nitric oxide in choroidal blood flow regulation during light/dark transitions. Invest Ophthalmol Vis Sci 48:4215–4219

    PubMed  Google Scholar 

  150. Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 10:1369–1376

    PubMed  CAS  Google Scholar 

  151. Iannaccone AE, DuPont J, Grunwald JE (2000) Human retinal hemodynamics following administration of 5-isosorbide mononitrate. Curr Eye Res 20:205–210

    PubMed  CAS  Google Scholar 

  152. Imai K (1977) Cholinergic innervation of the choroid. Ophthalmic Res 9:194–200

    Google Scholar 

  153. Ishitsuka T, Iadecola C, Underwood MD et al (1986) Lesions of nucleus tractus solitarii globally impair cerebrovascular autoregulation. Am J Physiol 251:H269–H281

    PubMed  CAS  Google Scholar 

  154. Ito H, Seki M (1998) Ascending projections from the area postrema and the nucleus of the solitary tract of Suncus murinus: anterograde tracing study using Phaseolus vulgaris leucoagglutinin. Okajimas Folia Anat Jpn 75:9–31

    PubMed  CAS  Google Scholar 

  155. Jablonski MM, Iannaccone A, Reynolds DH et al (2007) Age-related decline in VIP-positive parasympathetic nerve fibers in the human submacular choroid. Invest Ophthalmol Vis Sci 48:479–485

    PubMed  PubMed Central  Google Scholar 

  156. Jacot JL, O’Neill JT, Scandling DM et al (1998) Nitric oxide modulation of retinal, choroidal, and anterior uveal blood flow in newborn piglets. J Ocul Pharmacol Ther 14:473–489

    PubMed  CAS  Google Scholar 

  157. Jhamandas JH, Harris KH, Petrov T, Krukoff TL (1992) Characterization of the parabrachial nucleus input to the hypothalamic paraventricular nucleus in the rat. J Neuroendocrinol 4:461–471

    PubMed  CAS  PubMed Central  Google Scholar 

  158. James CB, Smith SE (1991) Pulsatile ocular blood flow in patients with low tension glaucoma. Br J Ophthalmol 75:466–470

    PubMed  CAS  Google Scholar 

  159. Jandrasits K, Polak K, Luksch A et al (2001) Effects of atropine and propranolol on retinal vessel diameters during isometric exercise. Ophthalmic Res 33:185–190

    PubMed  Google Scholar 

  160. Jeppesen P, Sanye-Hajari J, Bek T (2007) Increased blood pressure induces a diameter response of retinal arterioles that increases with decreasing arteriolar diameter. Invest Ophthalmol Vis Sci 48:328–331

    PubMed  Google Scholar 

  161. Johansson O, Lundberg JM (1981) Ultrastructural localization of VIP-like immunoreactivity in large dense-core vesicles of ‘cholinergic-type’ nerve terminals in cat exocrine glands. Neuroscience 6:847–862

    PubMed  CAS  Google Scholar 

  162. Johnson PC (1980) The myogenic response. In: Bohr DF, Somlyo AP, Sparks HV (eds) Handbook of physiology: the cardiovascular system: vascular smooth muscle. Waverly Press, Baltimore, pp 409–442

    Google Scholar 

  163. Kahl BF, Reid TW (1995) Substance P and the eye. Prog Retin Eye Res 14:473–504

    CAS  Google Scholar 

  164. Katz DM, Karten HJ (1979) The discrete anatomical localization of vagal aortic afferents within a catecholamine-containing cell group in the nucleus solitarius. Brain Res 171:187–195

    PubMed  CAS  Google Scholar 

  165. Kawarai M, Koss MC (1998) Sympathetic vasoconstriction in the rat anterior choroid is mediated by alpha1-adrenoceptors. Eur J Pharmacol 363:35–40

    PubMed  CAS  Google Scholar 

  166. Kelly PA, Buckley CH, Ritchie IM et al (1998) Possible role for nitric oxide releasing nerves in the regulation of ocular blood flow in the rat. Br J Ophthalmol 82:1199–1202

    PubMed  CAS  PubMed Central  Google Scholar 

  167. Kergoat H, Faucher C (1999) Effects of oxygen and carbogen breathing on choroidal hemodynamics in humans. Invest Ophthalmol Vis Sci 40:2906–2911

    PubMed  CAS  Google Scholar 

  168. Kessler TL, Dartt DA (1994) Neural stimulation of conjunctival goblet cell mucous secretion in rats. Adv Exp Med Biol 350:393–398

    PubMed  CAS  Google Scholar 

  169. Kiel JW, Shepherd AP (1992) Autoregulation of choroidal blood flow in the rabbit. Invest Ophthalmol Vis Sci 33:2399–2410

    PubMed  CAS  Google Scholar 

  170. Kiel JW (1994) Choroidal myogenic autoregulation and intraocular pressure. Exp Eye Res 58:529–543

    PubMed  CAS  Google Scholar 

  171. Kiel JW, van Heuven WA (1995) Ocular perfusion pressure and choroidal blood flow in the rabbit. Invest Ophthalmol Vis Sci 36:579–585

    PubMed  CAS  Google Scholar 

  172. Kiel JW, Lovell MO (1996) Adrenergic modulation of choroidal blood flow in the rabbit. Invest Ophthalmol Vis Sci 37:673–679

    PubMed  CAS  Google Scholar 

  173. Kiel JW (1999) Modulation of choroidal autoregulation in the rabbit. Exp Eye Res 69:413–429

    PubMed  CAS  Google Scholar 

  174. Kimble TD, Fitzgerald ME, Reiner A (2006) Sustained upregulation of glial fibrillary acidic protein in Muller cells in pigeon retina following disruption of the parasympathetic control of choroidal blood flow. Exp Eye Res 83:1017–1030

    PubMed  CAS  Google Scholar 

  175. Kirby ML, Diab IM, Mattio TG (1978) Development of adrenergic innervation of the iris and fluorescent ganglion cells in the choroid of the chick eye. Anat Rec 191:311–319

    PubMed  CAS  Google Scholar 

  176. Kirch W, Horneber M, Tamm ER (1996) Characterization of Meibomian gland innervation in the cynomolgus monkey (Macaca fascicularis). Anat Embryol (Berl) 193:365–375

    CAS  Google Scholar 

  177. Kiryu J, Asrani S, Shahidi M et al (1995) Local response of the primate retinal microcirculation to increased metabolic demand induced by flicker. Invest Ophthalmol Vis Sci 36:1240–1246

    PubMed  CAS  Google Scholar 

  178. Kitamura Y, Okamura T, Kani K et al (1993) Nitric oxide-mediated retinal arteriolar and arterial dilatation induced by substance P. Invest Ophthalmol Vis Sci 34:2859–2865

    PubMed  CAS  Google Scholar 

  179. Klooster J, Beckers HJ, Ten Tusscher MP et al (1996) Sympathetic innervation of the rat choroid: an autoradiographic tracing and immunohistochemical study. Ophthalmic Res 28:36–43

    PubMed  CAS  Google Scholar 

  180. Korf HW (1984) Neuronal organization of the avian paraventricular nucleus: intrinsic, afferent, and efferent connections. J Exp Zool 232:387–395

    PubMed  CAS  Google Scholar 

  181. Korte GE, Burns MS, Bellhorn RW (1989) Epithelium-capillary interactions in the eye: the retinal pigment epithelium and the choriocapillaris. Int Rev Cytol 114:221–248

    PubMed  CAS  Google Scholar 

  182. Koss MC, Kuhlman L, Gherezghiher T (1991) IOP and ChBF control by the EW nucleus in cats. Invest Ophthalmol Vis Sci Suppl 32:1186

    Google Scholar 

  183. Koss MC, Gherezghiher T (1993) Adrenoceptor subtypes involved in neurally evoked sympathetic vasoconstriction in the anterior choroid of cats. Exp Eye Res 57:441–447

    PubMed  CAS  Google Scholar 

  184. Koss MC (1994) Adrenoceptor mechanisms in epinephrine-induced anterior choroidal vasoconstriction in cats. Exp Eye Res 59:715–722

    PubMed  CAS  Google Scholar 

  185. Koss MC (1998) Role of nitric oxide in maintenance of basal anterior choroidal blood flow in rats. Invest Ophthalmol Vis Sci 39:559–564

    PubMed  CAS  Google Scholar 

  186. Koss MC (1999) Analysis of blood flow in the long posterior ciliary artery of the cat. Invest Ophthalmol Vis Sci 40:800–804

    PubMed  CAS  Google Scholar 

  187. Krishna R, Mermoud A, Baerveldt G et al (1995) Circadian rhythm of intraocular pressure: a rat model. Ophthalmic Res 27:163–167

    PubMed  CAS  Google Scholar 

  188. Krootila K, Uusitalo H, Palkama A (1988) Effect of neurogenic irritation and calcitonin gene-related peptide (CGRP) on ocular blood flow in the rabbit. Curr Eye Res 7:695–703

    PubMed  CAS  Google Scholar 

  189. Krootila K, Uusitalo H, Palkama A (1991) Intraocular and cardiovascular effects of calcitonin gene-related peptide (CGRP)-I and -II in the rabbit. Invest Ophthalmol Vis Sci 32:3084–3090

    PubMed  CAS  Google Scholar 

  190. Krukoff TL, Mactavish D, Jhamandas JH (1997) Activation by hypotension of neurons in the hypothalamic paraventricular nucleus that project to the brainstem. J Comp Neurol 385:285–296

    PubMed  CAS  Google Scholar 

  191. Kubota T, Jonas JB, Naumann GO (1993) Decreased choroidal thickness in eyes with secondary angle closure glaucoma. An aetiological factor for deep retinal changes in glaucoma? Br J Ophthalmol 77:430–432

    PubMed  CAS  PubMed Central  Google Scholar 

  192. Kumagai N, Yuda K, Kadota T et al (1988) Substance P-like immunoreactivity in the central retinal artery of the rabbit. Exp Eye Res 46:591–596

    PubMed  CAS  Google Scholar 

  193. Kuwayama Y, Stone RA (1987) Distinct substance P and calcitonin gene-related peptide immunoreactive nerves in the guinea pig eye. Invest Ophthalmol Vis Sci 28:1947–1954

    PubMed  CAS  Google Scholar 

  194. Kuwayama Y, Grimes PA, Ponte B et al (1987) Autonomic neurons supplying the rat eye and the intraorbital distribution of vasoactive intestinal polypeptide (VIP)-like immunoreactivity. Exp Eye Res 44:907–922

    PubMed  CAS  Google Scholar 

  195. Langham ME, Grebe R, Hopkins S et al (1991) Choroidal blood flow in diabetic retinopathy. Exp Eye Res 52:167–173

    PubMed  CAS  Google Scholar 

  196. Laties AM, Jacobowitz D (1966) A comparative study of the autonomic innervation of the eye in monkey, cat, and rabbit. Anat Rec 156:383–395

    PubMed  CAS  Google Scholar 

  197. Laties AM (1967) Central retinal artery innervation. Absence of adrenergic innervation to the intraocular branches. Arch Ophthalmol 77:405–409

    PubMed  CAS  Google Scholar 

  198. Laties AM, Stone RA, Brecha NC (1981) Substance P-like immunoreactive nerve fibers in the trabecular meshwork. Invest Ophthalmol Vis Sci 21:484–486

    PubMed  CAS  Google Scholar 

  199. LaVail MM (1981) Analysis of neurological mutants with inherited retinal degeneration. Friedenwald lecture. Invest Ophthalmol Vis Sci 21:638–657

    PubMed  CAS  Google Scholar 

  200. LeDoux MS, Zhou Q, Murphy RB et al (2001) Parasympathetic innervation of the meibomian glands in rats. Invest Ophthalmol Vis Sci 42:2434–2441

    PubMed  CAS  Google Scholar 

  201. Li H, Grimes P (1993) Adrenergic innervation of the choroid and iris in diabetic rats. Curr Eye Res 12:89–94

    PubMed  CAS  Google Scholar 

  202. Lin T, Grimes PA, Stone RA (1988) Nerve pathways between the pterygopalatine ganglion and eye in cats. Anat Rec 222:95–102

    PubMed  CAS  Google Scholar 

  203. Linder J (1981) Effects of facial nerve section and stimulation on cerebral and ocular blood flow in hemorrhagic hypotension. Acta Physiol Scand 112:185–193

    PubMed  CAS  Google Scholar 

  204. Linsenmeier RA (1986) Effects of light and darkness on oxygen distribution and consumption in the cat retina. J Gen Physiol 88:521–542

    PubMed  CAS  Google Scholar 

  205. Liu JH, Dacus AC, Bartels SP (1991) Adrenergic mechanism in circadian elevation of intraocular pressure in rabbits. Invest Ophthalmol Vis Sci 32:2178–2183

    PubMed  CAS  Google Scholar 

  206. Longo A, Geiser M, Riva CE (2000) Subfoveal choroidal blood flow in response to light-dark exposure. Invest Ophthalmol Vis Sci 41:2678–2683

    PubMed  CAS  Google Scholar 

  207. Longo A, Geiser MH, Riva CE (2004) Posture changes and subfoveal choroidal blood flow. Invest Ophthalmol Vis Sci 45:546–551

    PubMed  Google Scholar 

  208. Lovasik JV, Kergoat H, Riva CE et al (2003) Choroidal blood flow during exercise-induced changes in the ocular perfusion pressure. Invest Ophthalmol Vis Sci 44:2126–2132

    PubMed  Google Scholar 

  209. Luhtala J, Palkama A, Uusitalo H (1991) Calcitonin gene-related peptide immunoreactive nerve fibers in the rat conjunctiva. Invest Ophthalmol Vis Sci 32:640–645

    PubMed  CAS  Google Scholar 

  210. Luhtala J, Uusitalo H (1991) The distribution and origin of substance P immunoreactive nerve fibres in the rat conjunctiva. Exp Eye Res 53:641–646

    PubMed  CAS  Google Scholar 

  211. Luksch A, Polak K, Beier C et al (2000) Effects of systemic NO synthase inhibition on choroidal and optic nerve head blood flow in healthy subjects. Invest Ophthalmol Vis Sci 41:3080–3084

    PubMed  CAS  Google Scholar 

  212. Luksch A, Polska E, Imhof A et al (2003) Role of NO in choroidal blood flow regulation during isometric exercise in healthy humans. Invest Ophthalmol Vis Sci 44:734–739

    PubMed  Google Scholar 

  213. Lundberg JM, Anggard A, Fahrenkrug J (1982) Complementary role of vasoactive intestinal polypeptide (VIP) and acetylcholine for cat submandibular gland blood flow and secretion. Acta Physiol Scand 114:329–337

    PubMed  CAS  Google Scholar 

  214. Macri FJ (1971) Vasoconstriction produced in the iris-ciliary body of the cat eye by stimulation of local ganglion-like receptors. Invest Ophthalmol 10:581–588

    PubMed  CAS  Google Scholar 

  215. Macri FJ, Cevario SJ (1975) Ciliary ganglion stimulation. II. Neurogenic, intraocular pathway for excitatory effects on aqueous humor production and outflow. Invest Ophthalmol 14:471–475

    PubMed  CAS  Google Scholar 

  216. Macri FJ, Cevario SJ (1975) Ciliary ganglion stimulation. I. Effects on aqueous humor inflow and outflow. Invest Ophthalmol 14:28–33

    PubMed  CAS  Google Scholar 

  217. Malmfors T (1965) The adrenergic innervation of the eye as demonstrated by fluorescence microscopy. Acta Physiol Scand 65:259–267

    PubMed  CAS  Google Scholar 

  218. Mann RM, Riva CE, Stone RA et al (1995) Nitric oxide and choroidal blood flow regulation. Invest Ophthalmol Vis Sci 36:925–930

    PubMed  CAS  Google Scholar 

  219. Mansson B, Ekstrom J (1991) On the non-adrenergic, non-cholinergic contribution to the parasympathetic nerve-evoked secretion of parotid saliva in the rat. Acta Physiol Scand 141:197–205

    PubMed  CAS  Google Scholar 

  220. Martin XD, Rabineau PA (1989) Vasoconstrictive effect of topical timolol on human retinal arteries. Graefes Arch Clin Exp Ophthalmol 227:526–530

    PubMed  CAS  Google Scholar 

  221. May CA (1997) Description and function of the ciliary nerves – some historical remarks on choroidal innervation. Exp Eye Res 65:1–5

    PubMed  CAS  Google Scholar 

  222. May CA, Fuchs AV, Scheib M et al (2002) Characterization of nitrergic neurons in the porcine and human ciliary nerves. Invest Ophthalmol Vis Sci 43:581–586

    PubMed  Google Scholar 

  223. May CA, Neuhuber W, Lutjen-Drecoll E (2004) Immunohistochemical classification and functional morphology of human choroidal ganglion cells. Invest Ophthalmol Vis Sci 45:361–367

    PubMed  Google Scholar 

  224. May CA, Skorski LM, Lutjen-Drecoll E (2005) Innervation of the porcine ciliary muscle and outflow region. J Anat 206:231–236

    PubMed  PubMed Central  Google Scholar 

  225. May PJ, Reiner AJ, Ryabinin AE (2008) Comparison of the distributions of urocortin-containing and cholinergic neurons in the perioculomotor midbrain of the cat and macaque. J Comp Neurol 507:1300–1316

    PubMed  PubMed Central  Google Scholar 

  226. McCulloch C (1988) Choroideremia and other choroidal atrophies. In: Newsome DA (ed) Retinal dystrophies and degenerations. Raven Press, New York, pp 285–295

    Google Scholar 

  227. McKenna OC, Wallman J (1985) Accessory optic system and pretectum of birds: comparisons with those of other vertebrates. Brain Behav Evol 26:91–116

    Google Scholar 

  228. Medina L, Reiner A (1994) Distribution of choline acetyltransferase immunoreactivity in the pigeon brain. J Comp Neurol 342:497–537

    PubMed  CAS  Google Scholar 

  229. Medrano CJ, Fox DA (1995) Oxygen consumption in the rat outer and inner retina: light- and pharmacologically-induced inhibition. Exp Eye Res 61:273–284

    PubMed  CAS  Google Scholar 

  230. Menage MJ, Robinson JC, Kaufman PL et al (1994) Retinal blood flow after superior cervical ganglionectomy: a laser Doppler study in the cynomolgus monkey. Br J Ophthalmol 78:49–53

    PubMed  CAS  PubMed Central  Google Scholar 

  231. Meneray MA, Fields TY, Bennett DJ (1997) Gs and Gq/11 couple vasoactive intestinal peptide and cholinergic stimulation to lacrimal secretion. Invest Ophthalmol Vis Sci 38:1261–1270

    PubMed  CAS  Google Scholar 

  232. Meriney SD, Pilar G (1987) Cholinergic innervation of the smooth muscle cells in the choroid coat of the chick eye and its development. J Neurosci 7:3827–3839

    PubMed  CAS  Google Scholar 

  233. Metelitsina TI, Grunwald JE, DuPont JC et al (2006) Effect of viagra on retinal vein diameter in AMD patients. Exp Eye Res 83:128–132

    PubMed  CAS  Google Scholar 

  234. Meyer DB (1977) The avian eye and its adaptations. In: Crescitelli F (ed) Handbook of sensory physiology. Springer, Berlin, pp 549–611

    Google Scholar 

  235. Meyer P, Flammer J, Luscher TF (1993) Endothelium-dependent regulation of the ophthalmic microcirculation in the perfused porcine eye: role of nitric oxide and endothelins. Invest Ophthalmol Vis Sci 34:3614–3621

    PubMed  CAS  Google Scholar 

  236. Miller A, Costa M, Furness JB et al (1981) Substance P immunoreactive sensory nerves supply the rat iris and cornea. Neurosci Lett 23:243–249

    PubMed  CAS  Google Scholar 

  237. Miller AS, Coster DJ, Costa M et al (1983) Vasoactive intestinal polypeptide immunoreactive nerve fibres in the human eye. Aust J Ophthalmol 11:185–193

    PubMed  CAS  Google Scholar 

  238. Milley JR, Rosenberg AA, Jones MD Jr (1984) Retinal and choroidal blood flows in hypoxic and hypercarbic newborn lambs. Pediatr Res 18:410–414

    PubMed  CAS  Google Scholar 

  239. Mindel JS, Mittag TW (1976) Choline acetyltransferase in ocular tissues of rabbits, cats, cattle, and man. Invest Ophthalmol 15:808–814

    PubMed  CAS  Google Scholar 

  240. Mione MC, Cavanagh JF, Lincoln J et al (1990) Long-term chemical sympathectomy leads to an increase of neuropeptide Y immunoreactivity in cerebrovascular nerves and iris of the developing rat. Neuroscience 34:369–378

    PubMed  CAS  Google Scholar 

  241. Mizota A, Adachi-Usami E (2002) Effect of body temperature on electroretinogram of mice. Invest Ophthalmol Vis Sci 43:3754–3757

    PubMed  Google Scholar 

  242. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    PubMed  CAS  Google Scholar 

  243. Moore PK, Wallace P, Gaffen Z et al (1993) Characterization of the novel nitric oxide synthase inhibitor 7-nitro indazole and related indazoles: antinociceptive and cardiovascular effects. Br J Pharmacol 110:219–224

    PubMed  CAS  PubMed Central  Google Scholar 

  244. Moore RY (1983) Organization and function of a central nervous system circadian oscillator: the suprachiasmatic hypothalamic nucleus. Fed Proc 42:2783–2789

    PubMed  CAS  Google Scholar 

  245. Morita Y, Hardebo JE, Bouskela E (1995) Influence of cerebrovascular sympathetic, parasympathetic, and sensory nerves on autoregulation and spontaneous vasomotion. Acta Physiol Scand 154:121–130

    PubMed  CAS  Google Scholar 

  246. Movaffaghy A, Chamot SR, Petrig BL et al (1998) Blood flow in the human optic nerve head during isometric exercise. Exp Eye Res 67:561–568

    PubMed  CAS  Google Scholar 

  247. Nagaoka T, Sakamoto T, Mori F et al (2002) The effect of nitric oxide on retinal blood flow during hypoxia in cats. Invest Ophthalmol Vis Sci 43:3037–3044

    PubMed  Google Scholar 

  248. Nakai M, Ogino K (1984) The relevance of cardio-pulmonary-vascular reflex to regulation of the brain vessels. Jpn J Physiol 34:193–197

    PubMed  CAS  Google Scholar 

  249. Nakanome Y, Karita K, Izumi H et al (1995) Two types of vasodilatation in cat choroid elicited by electrical stimulation of the short ciliary nerve. Exp Eye Res 60:37–42

    PubMed  CAS  Google Scholar 

  250. Nickla DL, Wildsoet C, Wallman J (1998) Visual influences on diurnal rhythms in ocular length and choroidal thickness in chick eyes. Exp Eye Res 66:163–181

    PubMed  CAS  Google Scholar 

  251. Nilsson SF, Bill A (1984) Vasoactive intestinal polypeptide (VIP): effects in the eye and on regional blood flows. Acta Physiol Scand 121:385–392

    PubMed  CAS  Google Scholar 

  252. Nilsson SF, Linder J, Bill A (1985) Characteristics of uveal vasodilation produced by facial nerve stimulation in monkeys, cats and rabbits. Exp Eye Res 40:841–852

    PubMed  CAS  Google Scholar 

  253. Nilsson SF, Sperber GO, Bill A (1986) Effects of vasoactive intestinal polypeptide (VIP) on intraocular pressure, facility of outflow and formation of aqueous humor in the monkey. Exp Eye Res 43:849–857

    PubMed  CAS  Google Scholar 

  254. Nilsson SF (1991) Neuropeptide Y (NPY): a vasoconstrictor in the eye, brain and other tissues in the rabbit. Acta Physiol Scand 141:455–467

    PubMed  CAS  Google Scholar 

  255. Nilsson SF (1996) Nitric oxide as a mediator of parasympathetic vasodilation in ocular and extraocular tissues in the rabbit. Invest Ophthalmol Vis Sci 37:2110–2119

    PubMed  CAS  Google Scholar 

  256. Nilsson SF (2000) The significance of nitric oxide for parasympathetic vasodilation in the eye and other orbital tissues in the cat. Exp Eye Res 70:61–72

    PubMed  CAS  Google Scholar 

  257. Nilsson SF, Maepea O, Alm A et al (2001) Ocular blood flow and retinal metabolism in abyssinian cats with hereditary retinal degeneration. Invest Ophthalmol Vis Sci 42:1038–1044

    PubMed  CAS  Google Scholar 

  258. Nyborg NC, Nielsen PJ (1990) The level of spontaneous myogenic tone in isolated human posterior ciliary arteries decreases with age. Exp Eye Res 51:711–715

    PubMed  CAS  Google Scholar 

  259. O’Brien C, Kelly PA, Ritchie IM (1997) Effect of chronic inhibition of nitric oxide synthase on ocular blood flow and glucose metabolism in the rat. Br J Ophthalmol 81:68–71

    PubMed  PubMed Central  Google Scholar 

  260. Ohkubo H, Chiba S (1989) Vascular responses of ophthalmic arteries to exogenous and endogenous norepinephrine. Exp Eye Res 48:539–547

    PubMed  CAS  Google Scholar 

  261. Okamura T, Ayajiki K, Kangawa K et al (1997) Mechanism of adrenomedullin-induced relaxation in isolated canine retinal arteries. Invest Ophthalmol Vis Sci 38:56–61

    PubMed  CAS  Google Scholar 

  262. Oksala O, Stjernschantz J (1988) Increase in outflow facility of aqueous humor in cats induced by calcitonin gene-related peptide. Exp Eye Res 47:787–790

    PubMed  CAS  Google Scholar 

  263. Okubo H, Gherezhiher T, Koss MC (1990) Long posterior ciliary arterial blood flow and systemic blood pressure. Invest Ophthalmol Vis Sci 31:819–826

    PubMed  CAS  Google Scholar 

  264. Okuno T, Oku H, Sugiyama T et al (2002) Evidence that nitric oxide is involved in autoregulation in optic nerve head of rabbits. Invest Ophthalmol Vis Sci 43:784–789

    PubMed  Google Scholar 

  265. Overend J, Wilson WS, Martin W (2005) Biphasic neurogenic vasodilatation in the bovine intraocular long posterior ciliary artery: involvement of nitric oxide and an additional unidentified neurotransmitter. Br J Pharmacol 145:1001–1008

    PubMed  CAS  PubMed Central  Google Scholar 

  266. Oyster CW (1999) The human eye: structure and function. Sinauer Associates, Sunderland

    Google Scholar 

  267. Papastergiou GI, Schmid GF, Riva CE et al (1998) Ocular axial length and choroidal thickness in newly hatched chicks and one-year-old chickens fluctuate in a diurnal pattern that is influenced by visual experience and intraocular pressure changes. Exp Eye Res 66:195–205

    PubMed  CAS  Google Scholar 

  268. Parver LM, Auker C, Carpenter DO (1980) Choroidal blood flow as a heat dissipating mechanism in the macula. Am J Ophthalmol 89:641–646

    PubMed  CAS  Google Scholar 

  269. Parver LM, Auker CR, Carpenter DO et al (1982) Choroidal blood flow II. Reflexive control in the monkey. Arch Ophthalmol 100:1327–1330

    PubMed  CAS  Google Scholar 

  270. Parver LM, Auker CR, Carpenter DO (1983) Choroidal blood flow. III. Reflexive control in human eyes. Arch Ophthalmol 101:1604–1606

    PubMed  CAS  Google Scholar 

  271. Pauleikhoff D, Chen JC, Chisholm IH et al (1990) Choroidal perfusion abnormality with age-related Bruch’s membrane change. Am J Ophthalmol 109:211–217

    PubMed  CAS  Google Scholar 

  272. Paulson OB, Strandgaard S, Edvinsson L (1990) Cerebral autoregulation. Cerebrovasc Brain Metab Rev 2:161–192

    PubMed  CAS  Google Scholar 

  273. Payne AP (1994) The harderian gland: a tercentennial review. J Anat 185(Pt 1):1–49

    PubMed  PubMed Central  Google Scholar 

  274. Pickard GE, Smeraski CA, Tomlinson CC et al (2002) Intravitreal injection of the attenuated pseudorabies virus PRV Bartha results in infection of the hamster suprachiasmatic nucleus only by retrograde transsynaptic transport via autonomic circuits. J Neurosci 22:2701–2710

    PubMed  CAS  Google Scholar 

  275. Polak K, Wimpissinger B, Berisha F et al (2003) Effects of sildenafil on retinal blood flow and flicker-induced retinal vasodilatation in healthy subjects. Invest Ophthalmol Vis Sci 44:4872–4876

    PubMed  Google Scholar 

  276. Porter JP, Brody MJ (1986) A comparison of the hemodynamic effects produced by electrical stimulation of subnuclei of the paraventricular nucleus. Brain Res 375:20–29

    PubMed  CAS  Google Scholar 

  277. Potts AM (1966) An hypothesis on macular disease. Trans Am Acad Ophthalmol Otolaryngol 70:1058–1062

    PubMed  CAS  Google Scholar 

  278. Pournaras CJ, Logean E, Riva CE et al (2006) Regulation of subfoveal choroidal blood flow in age-related macular degeneration. Invest Ophthalmol Vis Sci 47:1581–1586

    PubMed  Google Scholar 

  279. Prieto D, Benedito S, Nielsen PJ et al (1991) Calcitonin gene-related peptide is a potent vasodilator of bovine retinal arteries in vitro. Exp Eye Res 53:399–405

    PubMed  CAS  Google Scholar 

  280. Prieto D, Simonsen U, Nyborg NC (1995) Regional involvement of an endothelium-derived contractile factor in the vasoactive actions of neuropeptide Y in bovine isolated retinal arteries. Br J Pharmacol 116:2729–2737

    PubMed  CAS  PubMed Central  Google Scholar 

  281. Prunte C, Niesel P (1988) Quantification of choroidal blood-flow parameters using indocyanine green video-fluorescence angiography and statistical picture analysis. Graefes Arch Clin Exp Ophthalmol 226:55–58

    PubMed  CAS  Google Scholar 

  282. Ramrattan RS, van der Schaft TL, Mooy CM et al (1994) Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci 35:2857–2864

    PubMed  CAS  Google Scholar 

  283. Ravalico G, Toffoli G, Pastori G et al (1996) Age-related ocular blood flow changes. Invest Ophthalmol Vis Sci 37:2645–2650

    PubMed  CAS  Google Scholar 

  284. Reiner A, Karten HJ, Gamlin PDR et al (1983) Parasympathetic ocular control: functional subdivisions and circuitry of the avian nucleus of Edinger-Westphal. Trends Neurosci 6:140–145

    Google Scholar 

  285. Reiner A, Erichsen JT, Cabot JB et al (1991) Neurotransmitter organization of the nucleus of Edinger-Westphal and its projection to the avian ciliary ganglion. Vis Neurosci 6:451–472

    PubMed  CAS  Google Scholar 

  286. Reiner A, Shih YF, Fitzgerald ME (1995) The relationship of choroidal blood flow and accommodation to the control of ocular growth. Vision Res 35:1227–1245

    PubMed  CAS  Google Scholar 

  287. Reiner A, Zagvazdin Y, Fitzgerald ME (2003) Choroidal blood flow in pigeons compensates for decreases in arterial blood pressure. Exp Eye Res 76:273–282

    PubMed  CAS  Google Scholar 

  288. Richard G, Weber J (1987) Der Einfluss der Betablocker Timolol und Pindolol auf die retinale Hamodynamik–eine videoangiographische Studie. Klin Monatsbl Augenheilkd 190:34–39

    PubMed  CAS  Google Scholar 

  289. Ríos JD, Zoukhri D, Rawe IM, Hodges RR, Zieske JD, Dartt DA (1999) Immunolocalization of muscarinic and VIP receptor subtypes and their role in stimulating goblet cell secretion. Invest Ophthalmol Vis Sci 40:1102–1111

    PubMed  CAS  Google Scholar 

  290. Riva CE, Grunwald JE, Petrig BL (1986) Autoregulation of human retinal blood flow. An investigation with laser Doppler velocimetry. Invest Ophthalmol Vis Sci 27:1706–1712

    PubMed  CAS  Google Scholar 

  291. Riva CE, Cranstoun SD, Mann RM et al (1994) Local choroidal blood flow in the cat by laser Doppler flowmetry. Invest Ophthalmol Vis Sci 35:608–618

    PubMed  CAS  Google Scholar 

  292. Riva CE, Titze P, Hero M et al (1997) Choroidal blood flow during isometric exercises. Invest Ophthalmol Vis Sci 38:2338–2343

    PubMed  CAS  Google Scholar 

  293. Riva CE, Titze P, Hero M et al (1997) Effect of acute decreases of perfusion pressure on choroidal blood flow in humans. Invest Ophthalmol Vis Sci 38:1752–1760

    PubMed  CAS  Google Scholar 

  294. Riva CE, Falsini B, Logean E (2001) Flicker-evoked responses of human optic nerve head blood flow: luminance versus chromatic modulation. Invest Ophthalmol Vis Sci 42:756–762

    PubMed  CAS  Google Scholar 

  295. Rogers RF, Paton JF, Schwaber JS (1993) NTS ­neuronal responses to arterial pressure and pres­sure changes in the rat. Am J Physiol 265:R1355–R1368

    PubMed  CAS  Google Scholar 

  296. Ruskell GL (1967) Vasomotor axons of the lacrimal glands monkeys and the ultrastructural identification of sympathetic terminals. Z Zellforsch Mikrosk Anat 83:321–333

    PubMed  CAS  Google Scholar 

  297. Ruskell GL (1970) An ocular parasympathetic nerve pathway of facial nerve origin and its influence on intraocular pressure. Exp Eye Res 10:319–330

    PubMed  CAS  Google Scholar 

  298. Ruskell GL (1971) Facial parasympathetic innervation of the choroidal blood vessels in monkeys. Exp Eye Res 12:166–172

    PubMed  CAS  Google Scholar 

  299. Ruskell GL (2004) Distribution of pterygopalatine ganglion efferents to the lacrimal gland in man. Exp Eye Res 78:329–335

    PubMed  CAS  Google Scholar 

  300. Ruskell GL (1965) The orbital distribution of the sphenopalatine ganglion in the rabbit. In: Rohen J (ed) The structure of the eye. Schattauer, Stutgart, pp 323–339

    Google Scholar 

  301. Sato E, Sakamoto T, Nagaoka T et al (2003) Role of nitric oxide in regulation of retinal blood flow during hypercapnia in cats. Invest Ophthalmol Vis Sci 44:4947–4953

    PubMed  Google Scholar 

  302. Scheiner AJ, Riva CE, Kazahaya K et al (1994) Effect of flicker on macular blood flow assessed by the blue field simulation technique. Invest Ophthalmol Vis Sci 35:3436–3441

    PubMed  CAS  Google Scholar 

  303. Schmerl E, Steinberg B (1949) The role of ciliary and superior cervical ganglia in ocular tension. Am J Ophthalmol 32:947–90

    PubMed  CAS  Google Scholar 

  304. Schmetterer L, Findl O, Strenn K et al (1997) Role of NO in the O2 and CO2 responsiveness of cerebral and ocular circulation in humans. Am J Physiol 273:R2005–R2012

    PubMed  CAS  Google Scholar 

  305. Schmetterer L, Findl O, Fasching P et al (1997) Nitric oxide and ocular blood flow in patients with IDDM. Diabetes 46:653–658

    PubMed  CAS  Google Scholar 

  306. Schrödl F, Schweigert M, Brehmer A et al (2001) Intrinsic neurons in the duck choroid are contacted by CGRP-immunoreactive nerve fibres: evidence for a local pre-central reflex arc in the eye. Exp Eye Res 72:137–146

    PubMed  Google Scholar 

  307. Schrödl F, Tines R, Brehmer A et al (2001) Intrinsic choroidal neurons in the duck eye receive sympathetic input: anatomical evidence for adrenergic modulation of nitrergic functions in the choroid. Cell Tissue Res 304:175–184

    PubMed  Google Scholar 

  308. Schrödl F, De Laet A, Tassignon MJ et al (2003) Intrinsic choroidal neurons in the human eye: projections, targets, and basic electrophysiological data. Invest Ophthalmol Vis Sci 44:3705–3712

    PubMed  Google Scholar 

  309. Schrödl F, De Stefano ME, Reese S et al (2004) Comparative anatomy of nitrergic intrinsic choroidal neurons (ICN) in various avian species. Exp Eye Res 78:187–196

    Google Scholar 

  310. Schrödl F, Brehmer A, Neuhuber WL et al (2006) The autonomic facial nerve pathway in birds: a tracing study in chickens. Invest Ophthalmol Vis Sci 47:3225–3233

    PubMed  Google Scholar 

  311. Segade LA, Quintanilla JS (1990) Distribution of postganglionic parasympathetic fibers originating in the pterygopalatine ganglion in the maxillary and ophthalmic nerve branches of the trigeminal nerve; HRP and WGA-HRP study in the guinea pig. Brain Res 522:327–332

    PubMed  CAS  Google Scholar 

  312. Seifert P, Spitznas M (1999) Vasoactive intestinal polypeptide (VIP) innervation of the human eyelid glands. Exp Eye Res 68:685–692

    PubMed  CAS  Google Scholar 

  313. Seligsohn EE, Bill A (1993) Effects of NG-nitro-L-arginine methyl ester on the cardiovascular system of the anaesthetized rabbit and on the cardiovascular response to thyrotropin-releasing hormone. Br J Pharmacol 109:1219–1225

    PubMed  CAS  PubMed Central  Google Scholar 

  314. Shakoor A, Blair NP, Mori M et al (2006) Chorioretinal vascular oxygen tension changes in response to light flicker. Invest Ophthalmol Vis Sci 47:4962–4965

    PubMed  PubMed Central  Google Scholar 

  315. Shih YF, Fitzgerald ME, Reiner A (1993) Effect of choroidal and ciliary nerve transection on choroidal blood flow, retinal health, and ocular enlargement. Vis Neurosci 10:969–979

    PubMed  CAS  Google Scholar 

  316. Shih YF, Fitzgerald ME, Reiner A (1994) The effects of choroidal or ciliary nerve transection on myopic eye growth induced by goggles. Invest Ophthalmol Vis Sci 35:3691–3701

    PubMed  CAS  Google Scholar 

  317. Shih YF, Lin SY, Huang JK et al (1997) The choroidal blood flow response after flicker stimulation in chicks. J Ocul Pharmacol Ther 13:213–218

    PubMed  CAS  Google Scholar 

  318. Shih YF, Fitzgerald ME, Cuthbertson SL et al (1999) Influence of ophthalmic nerve fibers on choroidal blood flow and myopic eye growth in chicks. Exp Eye Res 69:9–20

    PubMed  CAS  Google Scholar 

  319. Shimizu Y (1982) Localization of neuropeptides in the cornea and uvea of the rat: an immunohistochemical study. Cell Mol Biol 28:103–110

    PubMed  CAS  Google Scholar 

  320. Simons E, Smith PG (1994) Sensory and autonomic innervation of the rat eyelid: neuronal origins and peptide phenotypes. J Chem Neuroanat 7:35–47

    PubMed  CAS  Google Scholar 

  321. Singh J, Adeghate E, Burrows S et al (1994) Protein secretion and the identification of neurotransmitters in the isolated pig lacrimal gland. Adv Exp Med Biol 350:57–60

    PubMed  CAS  Google Scholar 

  322. Smith PG, Fan Q (1996) Sympathetic nerve trajectories to rat orbital targets: role of connective tissue pathways. J Comp Neurol 365:69–78

    PubMed  CAS  Google Scholar 

  323. Spencer SE, Sawyer WB, Wada H et al (1990) CNS projections to the pterygopalatine parasympathetic preganglionic neurons in the rat: a retrograde transneuronal viral cell body labeling study. Brain Res 534:149–169

    PubMed  CAS  Google Scholar 

  324. Spraul CW, Lang GE, Grossniklaus HE (1996) Morphometric analysis of the choroid, Bruch’s membrane, and retinal pigment epithelium in eyes with age-related macular degeneration. Invest Ophthalmol Vis Sci 37:2724–2735

    PubMed  CAS  Google Scholar 

  325. Steinberg RH (1987) Monitoring communications between photoreceptors and pigment epithelial cells: effects of “mild” systemic hypoxia. Friedenwald lecture. Invest Ophthalmol Vis Sci 28:1888–1904

    PubMed  CAS  Google Scholar 

  326. Steinle JJ, Krizsan-Agbas D, Smith PG (2000) Regional regulation of choroidal blood flow by autonomic innervation in the rat. Am J Physiol Regul Integr Comp Physiol 279:R202–R209

    PubMed  CAS  Google Scholar 

  327. Steinle JJ, Smith PG (2000) Presynaptic muscarinic facilitation of parasympathetic neurotransmission after sympathectomy in the rat choroid. J Pharmacol Exp Ther 294:627–632

    PubMed  CAS  Google Scholar 

  328. Steinle JJ, Pierce JD, Clancy RL et al (2002) Increased ocular blood vessel numbers and sizes following chronic sympathectomy in rat. Exp Eye Res 74:761–768

    PubMed  CAS  Google Scholar 

  329. Steinle JJ, Lindsay NL, Lashbrook BL (2005) Cervical sympathectomy causes photoreceptor-specific cell death in the rat retina. Auton Neurosci 120:46–51

    PubMed  Google Scholar 

  330. Steinle JJ, Lashbrook BL (2006) Cervical sympathectomy regulates expression of key angiogenic factors in the rat choroid. Exp Eye Res 83:16–23

    PubMed  CAS  Google Scholar 

  331. Stiris T, Suguihara C, Hehre D et al (1992) Effect of cyclooxygenase inhibition on retinal and choroidal blood flow during hypercarbia in newborn piglets. Pediatr Res 31:127–130

    PubMed  CAS  Google Scholar 

  332. Stiris TA, Hall C, Christensen T et al (1991) Effect of different phototherapy lights on retinal and choroidal blood flow. Dev Pharmacol Ther 17:70–78

    PubMed  CAS  Google Scholar 

  333. Stiris TA, Suguihara C, Flynn J et al (1996) Effects of the cyclooxygenase inhibitor ibuprofen on retinal and choroidal blood flow during hyperoxia in newborn piglets. Biol Neonate 69:101–108

    PubMed  CAS  Google Scholar 

  334. Stjernschantz J (1976) Effect of parasympathetic stimulation on intraocular pressure, formation of the aqueous humour and outflow facility in rabbits. Exp Eye Res 22:639–645

    PubMed  CAS  Google Scholar 

  335. Stjernschantz J, Alm A, Bill A (1976) Effects of intracranial oculomotor nerve stimulation on ocular blood flow in rabbits: modification by indomethacin. Exp Eye Res 23:461–469

    PubMed  CAS  Google Scholar 

  336. Stjernschantz J, Alm A, Bill A (1977) Cholinergic and aminergic control of uveal blood flow in rabbits. Bibl Anat 16:42–46

    Google Scholar 

  337. Stjernschantz J, Bill A (1979) Effect of intracranial stimulation of the oculomotor nerve on ocular blood flow in the monkey, cat, and rabbit. Invest Ophthalmol Vis Sci 18:99–103

    PubMed  CAS  Google Scholar 

  338. Stjernschantz J, Geijer C, Bill A (1979) Electrical stimulation of the fifth cranial nerve in rabbits: effects on ocular blood flow, extravascular albumin content and intraocular pressure. Exp Eye Res 28:229–238

    PubMed  CAS  Google Scholar 

  339. Stjernschantz J, Bill A (1980) Vasomotor effects of facial nerve stimulation: noncholinergic vasodilation in the eye. Acta Physiol Scand 109:45–50

    PubMed  CAS  Google Scholar 

  340. Stjernschantz J, Sears M, Stjernschantz L (1981) Intraocular effects of substance P in the rabbit. Invest Ophthalmol Vis Sci 20:53–60

    PubMed  CAS  Google Scholar 

  341. Stolze HH, Sommer HJ (1985) Influence of secretagogues on volume and protein pattern in rabbit lacrimal fluid. Curr Eye Res 4:489–492

    PubMed  CAS  Google Scholar 

  342. Stone RA, Laties AM, Brecha NC (1982) Substance P-like immunoreactive nerves in the anterior segment of the rabbit, cat and monkey eye. Neuroscience 7:2459–2468

    PubMed  CAS  Google Scholar 

  343. Stone RA, Kuwayama Y (1985) Substance P-like immunoreactive nerves in the human eye. Arch Ophthalmol 103:1207–1211

    PubMed  CAS  Google Scholar 

  344. Stone RA (1986) Vasoactive intestinal polypeptide and the ocular innervation. Invest Ophthalmol Vis Sci 27:951–957

    PubMed  CAS  Google Scholar 

  345. Stone RA, Tervo T, Tervo K et al (1986) Vasoactive intestinal polypeptide-like immunoreactive nerves to the human eye. Acta Ophthalmol (Copenh) 64:12–18

    CAS  Google Scholar 

  346. Stone RA, Kuwayama Y, Laties AM (1987) Regulatory peptides in the eye. Experientia 43:791–800

    PubMed  CAS  Google Scholar 

  347. Stone RA, McGlinn AM (1988) Calcitonin gene-related peptide immunoreactive nerves in human and rhesus monkey eyes. Invest Ophthalmol Vis Sci 29:305–310

    PubMed  CAS  Google Scholar 

  348. Su EN, Alder VA, Yu DY et al (1994) Adrenergic and nitrergic neurotransmitters are released by the autonomic system of the pig long posterior ciliary artery. Curr Eye Res 13:907–917

    PubMed  CAS  Google Scholar 

  349. Su WW, Cheng ST, Hsu TS et al (2006) Abnormal flow-mediated vasodilation in normal-tension glaucoma using a noninvasive determination for peripheral endothelial dysfunction. Invest Ophthalmol Vis Sci 47:3390–3394

    PubMed  Google Scholar 

  350. Sugiyama T, Oku H, Ikari S et al (2000) Effect of nitric oxide synthase inhibitor on optic nerve head circulation in conscious rabbits. Invest Ophthalmol Vis Sci 41:1149–1152

    PubMed  CAS  Google Scholar 

  351. Sun W, Erichsen JT, May PJ (1994) NADPH-diaphorase reactivity in ciliary ganglion neurons: a comparison of distributions in the pigeon, cat, and monkey. Vis Neurosci 11:1027–1031

    PubMed  CAS  Google Scholar 

  352. Suzuki N, Hardebo JE, Owman C (1988) Origins and pathways of cerebrovascular vasoactive intestinal polypeptide-positive nerves in rat. J Cereb Blood Flow Metab 8:697–712

    PubMed  CAS  Google Scholar 

  353. Suzuki N, Hardebo JE, Owman C (1989) Trigeminal fibre collaterals storing substance P and calcitonin gene-related peptide associate with ganglion cells containing choline acetyltransferase and vasoactive intestinal polypeptide in the sphenopalatine ganglion of the rat. An axon reflex modulating parasym­pathetic ganglionic activity? Neuroscience 30:595–604

    PubMed  CAS  Google Scholar 

  354. Suzuki N, Hardebo JE, Owman C (1990) Origins and pathways of choline acetyltransferase-positive parasympathetic nerve fibers to cerebral vessels in rat. J Cereb Blood Flow Metab 10:399–408

    PubMed  CAS  Google Scholar 

  355. Takano T, Tian GF, Peng W et al (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9:260–267

    PubMed  CAS  Google Scholar 

  356. Ten Tusscher MP, Klooster J, van der Want JJ et al (1989) The allocation of nerve fibres to the anterior eye segment and peripheral ganglia of rats. II. The sympathetic innervation. Brain Res 494:105–113

    PubMed  Google Scholar 

  357. Ten Tusscher MP, Klooster J, Baljet B et al (1990) Pre- and post-ganglionic nerve fibres of the pterygopalatine ganglion and their allocation to the eyeball of rats. Brain Res 517:315–323

    PubMed  Google Scholar 

  358. Terenghi G, Polak JM, Allen JM, Zhang SQ, Unger WG, Bloom SR. (1983) Neuropeptide Y-immunoreac­tive nerves in the uvea of guinea pig and rat. Neurosci Lett 42:33–38

    PubMed  CAS  Google Scholar 

  359. Terenghi G, Polak JM, Probert L et al (1982) Mapping, quantitative distribution and origin of substance p- and VIP-containing nerves in the uvea of guinea pig eye. Histochemistry 75:399–417

    PubMed  CAS  Google Scholar 

  360. Terenghi G, Polak JM, Ghatei MA et al (1985) Distribution and origin of calcitonin gene-related peptide (CGRP) immunoreactivity in the sensory innervation of the mammalian eye. J Comp Neurol 233:506–516

    PubMed  CAS  Google Scholar 

  361. Tervo K, Tervo T, Eranko L et al (1981) Immunoreactivity for substance P in the Gasserian ganglion, ophthalmic nerve and anterior segment of the rabbit eye. Histochem J 13:435–443

    PubMed  CAS  Google Scholar 

  362. Tervo K, Tervo T, Eranko L et al (1982) Effect of sensory and sympathetic denervation on substance P immunoreactivity in nerve fibres of the rabbit eye. Exp Eye Res 34:577–585

    PubMed  CAS  Google Scholar 

  363. Tervo K, Tervo T, Eranko L et al (1982) Substance P-immunoreactive nerves in the human cornea and iris. Invest Ophthalmol Vis Sci 23:671–674

    PubMed  CAS  Google Scholar 

  364. Tillis TN, Murray DL, Schmidt GJ et al (1988) Preretinal oxygen changes in the rabbit under conditions of light and dark. Invest Ophthalmol Vis Sci 29:988–991

    PubMed  CAS  Google Scholar 

  365. Tittl M, Maar N, Polska E et al (2005) Choroidal hemodynamic changes during isometric exercise in patients with inactive central serous chorioretinopathy. Invest Ophthalmol Vis Sci 46:4717–4721

    PubMed  Google Scholar 

  366. Toda M, Okamura T, Azuma I et al (1997) Modulation by neurogenic acetylcholine of nitroxidergic nerve function in porcine ciliary arteries. Invest Ophthalmol Vis Sci 38:2261–2269

    PubMed  CAS  Google Scholar 

  367. Toda M, Okamura T, Ayajiki K et al (1999) Neurogenic vasoconstriction as affected by cholinergic and nitroxidergic nerves in dog ciliary and ophthalmic arteries. Invest Ophthalmol Vis Sci 40:1753–1760

    PubMed  CAS  Google Scholar 

  368. Toda N, Ayajiki K, Yoshida K et al (1993) Impairment by damage of the pterygopalatine ganglion of nitroxidergic vasodilator nerve function in canine cerebral and retinal arteries. Circ Res 72:206–213

    PubMed  CAS  Google Scholar 

  369. Toda N, Kitamura Y, Okamura T (1995) Functional role of nerve-derived nitric oxide in isolated dog ophthalmic arteries. Invest Ophthalmol Vis Sci 36:563–570

    PubMed  CAS  Google Scholar 

  370. Toda N, Toda M, Ayajiki K et al (1998) Cholinergic nerve function in monkey ciliary arteries innervated by nitroxidergic nerve. Am J Physiol 274:H1582–H1589

    PubMed  CAS  Google Scholar 

  371. Toledo CA, Britto LR, Pires RS et al (2002) Interspecific differences in the expression of the AMPA-type glutamate receptors and parvalbumin in the nucleus of Edinger-Westphal of chicks and pigeons. Brain Res 947:122–130

    PubMed  CAS  Google Scholar 

  372. Toshida H, Nguyen DH, Beuerman RW et al (2007) Evaluation of novel dry eye model: preganglionic parasympathetic denervation in rabbit. Invest Ophthalmol Vis Sci 48:4468–4475

    PubMed  PubMed Central  Google Scholar 

  373. Tóth IE, Boldogkoi Z, Medveczky I et al (1999) Lacrimal preganglionic neurons form a subdivision of the superior salivatory nucleus of rat: transneuronal labelling by pseudorabies virus. J Auton Nerv Syst 77:45–54

    PubMed  Google Scholar 

  374. Tso MOM, Jampol LM (1990) Hypertensive retinopathy, choroidopathy & optic neuropathy of hypertensive ocular disease. In: Laragh JH, Brenner BM (eds) Hypertension: pathophysiology, diagnosis and management. Raven Press, New York, pp 433–465

    Google Scholar 

  375. Tso MOM (1988) Photic injury to the retina and pathogenesis of age-related macular degeneration. In: Tso MOM (ed) Retinal diseases: biomedical foundations and clinical management. Lippincott Co., Philadelphia, pp 187–214

    Google Scholar 

  376. Uddman R, Alumets J, Ehinger B et al (1980) Vasoactive intestinal peptide nerves in ocular and orbital structures of the cat. Invest Ophthalmol Vis Sci 19:878–885

    PubMed  CAS  Google Scholar 

  377. Unger WG, Terenghi G, Ghatei MA et al (1985) Calcitonin gene-related polypeptide as a mediator of the neurogenic ocular injury response. J Ocul Pharmacol 1:189–199

    PubMed  CAS  Google Scholar 

  378. Uusitalo H, Lehtosalo J, Palkama A et al (1984) Vasoactive intestinal polypeptide (VIP)-like immunoreactivity in the human and guinea-pig choroid. Exp Eye Res 38:435–437

    PubMed  CAS  Google Scholar 

  379. Uusitalo H, Lehtosalo JI, Palkama A (1985) Vasoactive intestinal polypeptide (VIP)-immunoreactive nerve fibers in the anterior uvea of the guinea pig. Ophthalmic Res 17:235–240

    PubMed  CAS  Google Scholar 

  380. Uusitalo H, Krootila K, Palkama A (1989) Calcitonin gene-related peptide (CGRP) immunoreactive sensory nerves in the human and guinea pig uvea and cornea. Exp Eye Res 48:467–475

    PubMed  CAS  Google Scholar 

  381. van der Werf F, Baljet B, Prins M et al (1996) Innervation of the lacrimal gland in the cynomolgous monkey: a retrograde tracing study. J Anat 188(Pt 3):591–601

    PubMed  PubMed Central  Google Scholar 

  382. van Pinxteren PC, van Alphen GW (1984) Acetylcholine can exert two opposite effects on uveal flow in isolated arterially perfused eyes of cats and rabbits. Curr Eye Res 3:1001–1006

    PubMed  Google Scholar 

  383. Voaden MJ, Hussain AA, Taj M et al (1983) Light and retinal metabolism. Biochem Soc Trans 11:679–681

    PubMed  CAS  Google Scholar 

  384. Walcott B, Sibony PA, Keyser KT (1989) Neuropeptides and the innervation of the avian lacrimal gland. Invest Ophthalmol Vis Sci 30:1666–1674

    PubMed  CAS  Google Scholar 

  385. Walters BB, Gillespie SA, Moskowitz MA (1986) Cerebrovascular projections from the sphenopalatine and otic ganglia to the middle cerebral artery of the cat. Stroke 17:488–494

    PubMed  CAS  Google Scholar 

  386. Wang L, Kondo M, Bill A (1997) Glucose metabolism in cat outer retina. Effects of light and hyperoxia. Invest Ophthalmol Vis Sci 38:48–55

    PubMed  CAS  Google Scholar 

  387. Wang Y, Okamura T, Toda N (1993) Mechanisms of acetylcholine-induced relaxation in dog external and internal ophthalmic arteries. Exp Eye Res 57:275–281

    PubMed  CAS  Google Scholar 

  388. Webb SM, Puig-Domingo ML, Viader M et al (1992) Harderian gland peptides. In: Webb SM, Hoffman RA, Puig-Domingo ML, Reiter RJ (eds) Harderian glands: porphyrin metabolism: behavioral and endocrine effects. Springer, Berlin, pp 235–243

    Google Scholar 

  389. Weinstein JM, Duckrow RB, Beard D et al (1983) Regional optic nerve blood flow and its autoregulation. Invest Ophthalmol Vis Sci 24:1559–1565

    PubMed  CAS  Google Scholar 

  390. Weiter JJ, Schachar RA, Ernest JT (1973) Control of intraocular blood flow. I. Intraocular pressure. Invest Ophthalmol 12:327–331

    PubMed  CAS  Google Scholar 

  391. Wiederholt M, Sturm A, Lepple-Wienhues A (1994) Relaxation of trabecular meshwork and ciliary muscle by release of nitric oxide. Invest Ophthalmol Vis Sci 35:2515–2520

    PubMed  CAS  Google Scholar 

  392. Wiencke AK, Nilsson H, Nielsen PJ et al (1994) Nonadrenergic noncholinergic vasodilation in bovine ciliary artery involves CGRP and neurogenic nitric oxide. Invest Ophthalmol Vis Sci 35:3268–3277

    PubMed  CAS  Google Scholar 

  393. Wikberg-Matsson A, Simonsen U (2001) Potent alpha(2A)-adrenoceptor-mediated vasoconstriction by brimonidine in porcine ciliary arteries. Invest Ophthalmol Vis Sci 42:2049–2055

    PubMed  CAS  Google Scholar 

  394. Wild JM, Arends JJ, Zeigler HP (1990) Projections of the parabrachial nucleus in the pigeon (Columba livia). J Comp Neurol 293:499–523

    PubMed  CAS  Google Scholar 

  395. Wilson TM, Strang R, MacKenzie ET (1977) The response of the choroidal and cerebral circulations to changing arterial PCO2 and acetazolamide in the baboon. Invest Ophthalmol Vis Sci 16:576–580

    PubMed  CAS  Google Scholar 

  396. Wimpissinger B, Resch H, Berisha F et al (2003) Effects of isometric exercise on subfoveal choroidal blood flow in smokers and nonsmokers. Invest Ophthalmol Vis Sci 44:4859–4863

    PubMed  Google Scholar 

  397. Wyss JM, Oparil S, Chen YF (1990) The role of the central nervous system in hypertension. In: Laragh JH, Brenner BM (eds) Hypertension: pathophysiology, diagnosis, and management. Raven Press, New York, pp 679–701

    Google Scholar 

  398. Yamamoto R, Bredt DS, Snyder SH et al (1993) The localization of nitric oxide synthase in the rat eye and related cranial ganglia. Neuroscience 54:189–200

    PubMed  CAS  Google Scholar 

  399. Yancey CM, Linsenmeier RA (1988) The electroretinogram and choroidal PO2 in the cat during elevated intraocular pressure. Invest Ophthalmol Vis Sci 29:700–707

    PubMed  CAS  Google Scholar 

  400. Yancey CM, Linsenmeier RA (1989) Oxygen distribution and consumption in the cat retina at increased intraocular pressure. Invest Ophthalmol Vis Sci 30:600–611

    PubMed  CAS  Google Scholar 

  401. Yao K, Tschudi M, Flammer J et al (1991) Endothelium-dependent regulation of vascular tone of the porcine ophthalmic artery. Invest Ophthalmol Vis Sci 32:1791–1798

    PubMed  CAS  Google Scholar 

  402. Yasui T, Karita K, Izumi H et al (1997) Correlation between vasodilatation and secretion in the lacrimal gland elicited by stimulation of the cornea and facial nerve root of the cat. Invest Ophthalmol Vis Sci 38:2476–2482

    PubMed  CAS  Google Scholar 

  403. Ye XD, Laties AM, Stone RA (1990) Peptidergic innervation of the retinal vasculature and optic nerve head. Invest Ophthalmol Vis Sci 31:1731–1737

    PubMed  CAS  Google Scholar 

  404. Yoneya S, Amano H, Mori K et al (1995) Indocyanine green angiography of the choroid in young and aged eyes. Invest Ophthalmol Vis Sci Suppl 36:187

    Google Scholar 

  405. Yoshida A, Feke GT, Ogasawara H et al (1991) Effect of timolol on human retinal, choroidal and optic nerve head circulation. Ophthalmic Res 23:162–170

    PubMed  CAS  Google Scholar 

  406. Yoshitomi T, Gregory DS (1991) Ocular adrenergic nerves contribute to control of the circadian rhythm of aqueous flow in rabbits. Invest Ophthalmol Vis Sci 32:523–528

    PubMed  CAS  Google Scholar 

  407. Yoshitomi T, Ishikawa H, Hayashi E (2000) Pharmacological effects of pilocarpine on rabbit ciliary artery. Curr Eye Res 20:254–259

    PubMed  CAS  Google Scholar 

  408. Young RW (1978) The daily rhythm of shedding and degradation of rod and cone outer segment membranes in the chick retina. Invest Ophthalmol Vis Sci 17:105–116

    PubMed  CAS  Google Scholar 

  409. Youngstrom TG, Weiss ML, Nunez AA (1987) A retinal projection to the paraventricular nuclei of the hypothalamus in the Syrian hamster (Mesocricetus auratus). Brain Res Bull 19:747–750

    PubMed  CAS  Google Scholar 

  410. Yu DY, Alder VA, Su EN et al (1992) Relaxation effects of diltiazem, verapamil, and tolazoline on isolated cat ophthalmociliary artery. Exp Eye Res 55:757–766

    PubMed  CAS  Google Scholar 

  411. Yu DY, Cringle SJ, Su EN (2005) Intraretinal oxygen distribution in the monkey retina and the response to systemic hyperoxia. Invest Ophthalmol Vis Sci 46:4728–4733

    PubMed  Google Scholar 

  412. Zagvazdin Y, Sancesario G, Wang YX et al (1996) Evidence from its cardiovascular effects that 7-nitroindazole may inhibit endothelial nitric oxide synthase in vivo. Eur J Pharmacol 303:61–69

    PubMed  CAS  Google Scholar 

  413. Zagvazdin Y, Fitzgerald ME, Reiner A (2000) Role of muscarinic cholinergic transmission in Edinger-Westphal nucleus-induced choroidal vasodilation in pigeon. Exp Eye Res 70:315–327

    PubMed  CAS  Google Scholar 

  414. Zagvazdin YS, Fitzgerald ME, Sancesario G et al (1996) Neural nitric oxide mediates Edinger-Westphal nucleus evoked increase in choroidal blood flow in the pigeon. Invest Ophthalmol Vis Sci 37:666–672

    PubMed  CAS  Google Scholar 

  415. Zeitz O, Mayer J, Hufnagel D, Praga R, Wagenfeld L, Galambos P, Wiermann A, Rebel C, Richard G, Klemm M (2009) Neuronal activity influences hemodynamics in the paraoptic short posterior ciliary arteries: a comparison between healthy and glaucomatous subjects. Invest Ophthalmol Vis Sci 50:5846–5850

    PubMed  CAS  Google Scholar 

  416. Zhan GL, Lee PY, Ball DC et al (2002) Time dependent effects of sympathetic denervation on aqueous humor dynamics and choroidal blood flow in rabbits. Curr Eye Res 25:99–105

    PubMed  Google Scholar 

  417. Zhang HR (1994) Scanning electron-microscopic study of corrosion casts on retinal and choroidal angioarchitecture in man and animals. Prog Retin Eye Res 13:243–270

    Google Scholar 

  418. Zurakowski D, Vorwerk CK, Gorla M et al (1998) Nitrate therapy may retard glaucomatous optic neuropathy, perhaps through modulation of glutamate receptors. Vision Res 38:1489–1494

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Reiner Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reiner, A., Fitzgerald, M.E.C., Li, C. (2012). Neural Control of Ocular Blood Flow. In: Schmetterer, L., Kiel, J. (eds) Ocular Blood Flow. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69469-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69469-4_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69468-7

  • Online ISBN: 978-3-540-69469-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics