Skip to main content

Many Facets of Complexity in Logic

  • Conference paper
Logic and Theory of Algorithms (CiE 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5028))

Included in the following conference series:

  • 1027 Accesses

Abstract

There are many ways to define complexity in logic. In finite model theory, it is the complexity of describing properties, whereas in proof complexity it is the complexity of proving properties in a proof system. Here we consider several notions of complexity in logic, the connections among them, and their relationship with computational complexity. In particular, we show how the complexity of logics in the setting of finite model theory is used to obtain results in bounded arithmetic, stating which functions are provably total in certain weak systems of arithmetic. For example, the transitive closure function (testing reachability between two given points in a directed graph) is definable using only NL-concepts (where NL is non-deterministic log-space complexity class), and its totality is provable within NL-reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajtai, M.: \(\Sigma_1^1\)-Formulae on finite structures. Annals of Pure and Applied Logic 24(1), 1–48 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atserias, A., Kolaitis, P.G., Vardi, M.Y.: Constraint propagation as a proof system. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 77–91. Springer, Heidelberg (2004)

    Google Scholar 

  3. Atserias, A.: Fixed-point logics, descriptive complexity and random satisfiability. PhD thesis, UCSC (2002)

    Google Scholar 

  4. Buss, S.: Bounded Arithmetic. Bibliopolis, Naples (1986)

    Google Scholar 

  5. Cook, S.A., Kolokolova, A.: A second-order system for polynomial-time reasoning based on Grädel’s theorem. In: Proceedings of the Sixteens annual IEEE symposium on Logic in Computer Science, pp. 177–186 (2001)

    Google Scholar 

  6. Cook, S.A., Kolokolova, A.: A second-order system for polytime reasoning based on Grädel’s theorem. Annals of Pure and Applied Logic 124, 193–231 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cobham, A.: The intrinsic computational difficulty of functions. In: Bar-Hillel, Y. (ed.) Logic, Methodology and Philosophy of Science, pp. 24–30. North-Holland, Amsterdam (1965)

    Google Scholar 

  8. Cook, S.A.: Feasibly constructive proofs and the propositional calculus. In: Proceedings of the Seventh Annual ACM Symposium on Theory of Computing, pp. 83–97 (1975)

    Google Scholar 

  9. Cook, S.A.: CSC 2429S: Proof Complexity and Bounded Arithmetic. Course notes (Spring 1998-2002), http://www.cs.toronto.edu/~sacook/csc2429h

  10. Cook, S.: Theories for complexity classes and their propositional translations. In: Krajicek, J. (ed.) Complexity of computations and proofs, pp. 175–227. Quaderni di Matematica (2003)

    Google Scholar 

  11. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets. Complexity of computation, SIAM-AMC proceedings 7, 43–73 (1974)

    MathSciNet  Google Scholar 

  12. Grädel, E.: The Expressive Power of Second Order Horn Logic. In: Jantzen, M., Choffrut, C. (eds.) STACS 1991. LNCS, vol. 480, pp. 466–477. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  13. Grädel, E.: Capturing Complexity Classes by Fragments of Second Order Logic. Theoretical Computer Science 101, 35–57 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Immerman, N.: Relational queries computable in polytime. In: 14th ACM Symp.on Theory of Computing, pp. 147–152. Springer, Heidelberg (1982)

    Google Scholar 

  15. Immerman, N.: Languages that capture complexity classes. In: 15th ACM STOC symposium, pp. 347–354 (1983)

    Google Scholar 

  16. Immerman: Nondeterministic space is closed under complementation. In: SCT: Annual Conference on Structure in Complexity Theory (1988)

    Google Scholar 

  17. Immerman, N.: Descriptive complexity. Springer, New York (1999)

    MATH  Google Scholar 

  18. Kolokolova, A.: Systems of bounded arithmetic from descriptive complexity. PhD thesis, University of Toronto (October 2004)

    Google Scholar 

  19. Kolokolova, A.: Closure properties of weak systems of bounded arithmetic. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 369–383. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  20. Krajiček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory. Cambridge University Press, New York (1995)

    MATH  Google Scholar 

  21. Parikh, R.: Existence and feasibility of arithmetic. Journal of Symbolic Logic 36, 494–508 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  22. Razborov, A.: An equivalence between second-order bounded domain bounded arithmetic and first-order bounded arithmetic. In: Clote, P., Krajiček, J. (eds.) Arithmetic, proof theory and computational complexity, pp. 247–277. Clarendon Press, Oxford (1993)

    Google Scholar 

  23. Reingold, O.: Undirected ST-Connectivity in Log-Space. Electronic Colloquium on Computational Complexity, ECCC Report TR04-094 (2004)

    Google Scholar 

  24. Razborov, A.A., Rudich, S.: Natural proofs. Journal of Computer and System Sciences 55, 24–35 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Szelepcsényi, R.: The method of forced enumeration for nondeterministic automata. Acta Informatica 26, 279–284 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Takeuti, G.: RSUV isomorphism. In: Clote, P., Krajiček, J. (eds.) Arithmetic, proof theory and computational complexity, pp. 364–386. Clarendon Press, Oxford (1993)

    Google Scholar 

  27. Trahtenbrot, B.: The impossibility of an algorithm for the decision problem for finite domains. Doklady Academii Nauk SSSR, 70:569–572 (in Russian, 1950)

    Google Scholar 

  28. Vardi, M.Y.: The complexity of relational query language. In: 14th ACM Symp.on Theory of Computing, Springer, Heidelberg (1982)

    Google Scholar 

  29. Zambella, D.: Notes on polynomially bounded arithmetic. The Journal of Symbolic Logic 61(3), 942–966 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Arnold Beckmann Costas Dimitracopoulos Benedikt Löwe

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kolokolova, A. (2008). Many Facets of Complexity in Logic. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds) Logic and Theory of Algorithms. CiE 2008. Lecture Notes in Computer Science, vol 5028. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69407-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69407-6_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69405-2

  • Online ISBN: 978-3-540-69407-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics