Skip to main content

k-Clique Percolation and Clustering

  • Chapter
Handbook of Large-Scale Random Networks

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 18))

Abstract

We summarise recent results connected to the concept of k-clique percolation. This approach can be considered as a generalisation of edge percolation with a great potential as a community finding method in real-world graphs. We present a detailed study of the critical point for the appearance of a giant k-clique percolation cluster in the Erdős-Rényi-graph. The observed transition is continuous and at the transition point the scaling of the giant component with the number of vertices is highly non-trivial. The concept is extended to weighted and directed graphs as well. Finally, we demonstrate the effectiveness of k-clique percolation as a community finding method via a series of real-world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Adamcsek, G. Palla, I. J. Farkas, I. Derényi and T. Vicsek, CFinder: Locating cliques and overlapping modules in biological networks, Bionformatics, 22 (2006), 1021–1023.

    Article  Google Scholar 

  2. T. Aittokallio and B. Schwikowski, Graph-based methods for analysing networks in cell biology, Briefings in Bioinformatics, 7 (2006), 243–255.

    Article  Google Scholar 

  3. R. Albert and A.-L. Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys., 74 (2002), 47–97.

    Article  Google Scholar 

  4. A. V. Antonov and H. W. Mewes, Complex functionality of gene groups identified from high-throughput data, J. Mol. Biol., 363(1) (2006), 289–296.

    Article  Google Scholar 

  5. A.-L. Barabási and R. A. and, Emergence of scaling in random networks, Science, 286, (1999), 509–512.

    Article  MathSciNet  Google Scholar 

  6. A.-L. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert and T. Vicsek, Evolution of the social network of scientific collaborations, Physica A, 311 (2002), 590–614.

    Article  MATH  MathSciNet  Google Scholar 

  7. A.-L. Barabási and Z. N. Oltvai, Network Biology: Understanding the Cells’s Functional Organization, Nature Reviews Genetics, 5 (2004), 101–113.

    Article  Google Scholar 

  8. V. Batagelj and M. Zaveršnik, Short cycle connectivity, Discrete Mathematics, 307 (2007), 310–318.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Baumes, M. Goldberg and M. Magdon-Ismail, Efficient Identification of Overlapping Communities, Lect. Notes in Computer Science, 3495 (2005), 27–36.

    Article  Google Scholar 

  10. A. Beyer, S. Bandyopadhyay and T. Ideker, Integrating physical and genetic maps: from genomes to interaction networks, Nature Reviews Genetics, 9 (2007), 699–710.

    Article  Google Scholar 

  11. G. Bianconi and M. Marsili, Emergence of large cliques in random scale-free networks, Europhys. Lett., 74 (2006), 740–746.

    Article  MathSciNet  Google Scholar 

  12. G. Bianconi and M. Marsili, Number of cliques in random scale-free network ensembles, Physica D-Nonlinear Phenomena, 224 (2006), 1–6.

    Article  MATH  MathSciNet  Google Scholar 

  13. B. Bollobás, Graph Theory and Combinatorics: Proceedings of the Cambridge Combinatorial Conference in honour of Paul Erdős, Academic, New York, 1984.

    Google Scholar 

  14. B. Bollobás, Random graphs, Cambridge University Press, Cambridge, 2nd edition, 2001.

    MATH  Google Scholar 

  15. B. Bollobás and O. Riordan, Clique percolation, arXiv:0804.0867, 2008.

    Google Scholar 

  16. E. I. Boyle, S. A. Weng, J. Gollub, H. Jin, D. Botstein, J. M. Cherry and G. Sherlock, GO::TermFinder-open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes, Bioinformatics, 20 (2004), 3710–3715.

    Article  Google Scholar 

  17. S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt and E. Shir, A Model of Internet Topology Using k-shell Decomposition, Proc. Natl. Acad. Sci. USA, 104 (2007), 11150–11154.

    Article  Google Scholar 

  18. X. Castelló, V. M. Eguíluz and M. S. Miguel, Ordering dynamics with two nonexcluding options: bilingualism in language competition, New Journal of Physics, 8 (2006), 308.

    Article  Google Scholar 

  19. X. Castelló, R. Toivonen, V. M. Eguíluz, K. Kaski and M. S. Miguel, Anomalous lifetime distributions and topological traps in ordering dynamics, Europhys. Lett., 79 (2007), 66006.

    Article  Google Scholar 

  20. J. M. Cherry, C. Ball, S. Weng, G. Juvik, R. Schmidt, C. Adler, B. Dunn, S. Dwight, L. Riles, R. K. Mortimer and D. Botstein, Genetic and physical maps of Saccharomyces cerevisiae, Nature, 387(6632 Suppl) (1997), 67–73.

    Google Scholar 

  21. I. Derényi, G. Palla and T. Vicsek, Clique percolation in random networks, Phys. Rev. Lett., 94 (2005), 160202.

    Article  Google Scholar 

  22. S. N. Dorogovtsev, A. V. Goltsev and J. F. F. Mendes, k-core architecture and k-core percolation on complex networks, Physica D-Nonlinear Phenomena, 224 (2006), 7–19.

    Article  MATH  MathSciNet  Google Scholar 

  23. S. N. Dorogovtsev, A. V. Goltsev and J. F. F. Mendes, k-core organization of complex networks, Phys. Rev. Lett., 96 (2006), 040601.

    Article  Google Scholar 

  24. P. Erdős and A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci., 5, (1960), 17–61.

    Google Scholar 

  25. M. G. Everett and S. P. Borgatti, Analyzing Clique Overlap, Connections, 21 (1998), 49–61.

    Google Scholar 

  26. B. S. Everitt, Cluster Analysis, Edward Arnold, London, 3th edition, 1993.

    Google Scholar 

  27. I. J. Farkas, D. Ábel, G. Palla and T. Vicsek, Weighted network modules, New Journal of Physics, 9 (2007), 180.

    Article  Google Scholar 

  28. G. Finocchiaro, F. M. Mancuso, D. Cittaro and H. Muller, Graph-based identification of cancer signaling pathways from published gene expression signatures using PubLiME, Nucl. Ac. Res., 35 (2007), 2343–2355.

    Article  Google Scholar 

  29. S. Fortunato and M. Barthelemy, Resolution limit in community detection, Proc. Natl. Acad. Sci. USA, 104 (2007), 36–41.

    Article  Google Scholar 

  30. W. Gao and K.-F. Wong, Natural document clustering by clique percolation in random graphs, Lect. Notes in Comp. Sci., 4182 (2006), 119–131.

    Article  Google Scholar 

  31. D. Gfeler, J.-C. Chappelier and P. D. L. Rios, Finding instabilities in the community structure of complex networks, Phys. Rev. E., 72 (2005), 056135.

    Article  Google Scholar 

  32. M. Girvan and M. E. J. Newman, Community structure in social and biological networks, Proc. Natl. Acad. Sci. USA, 99 (2002), 7821–7826.

    Article  MATH  MathSciNet  Google Scholar 

  33. A. V. Goltsev, S. N. Dorogovtsev and J. F. F. Mendes, k-core (bootstrap) percolation on complex networks: Critical phenomena and nonlocal effects, Phys. Rev. E., 73 (2006), 056101.

    Article  MathSciNet  Google Scholar 

  34. M. C. González, H. J. Herrmann, J. Kertész and T. Vicsek, Community structure and ethnic preferences in school friendship networks, Physica A-Statistical Mechenics and its Applications, 379 (2007), 307–316.

    Article  Google Scholar 

  35. M. C. González, P. G. Lind and H. J. Herrmann, System of mobile agents to model social networks, Phys. Rev. Lett., 96 (2006), 088702.

    Article  Google Scholar 

  36. R. Guimerà and L. A. N. Amaral, Functional cartography of complex metabolic networks, Nature, 433 (2005), 895–900.

    Article  Google Scholar 

  37. R. Guimerà, S. Mossa, A. Turtschi and L. A. N. Amaral, The worldwide air transportation network: Anomalous centrality, community structure and cities’ global roles, Proc. Natl. Acad. Sci. USA, 102 (2005), 7794–7799.

    Article  MATH  MathSciNet  Google Scholar 

  38. R. Guimerà, M. Sales-Pardo and L. A. N. Amaral, Module identification in bipartite and directed networks, Phys. Rev. E., 76 (2007), 036102.

    Article  Google Scholar 

  39. U. Guldener, M. Munsterkotter, G. Kastenmuller, N. Strack and J. van Helden, CYGD: the Comprehensive Yeast Genome Database, Nucl. Ac. Res., 33 (2005), D364–D368.

    Article  Google Scholar 

  40. L. H. Hartwell, J. J. Hopfield, S. Leibler and A. W. Murray, From molecular to modular cell Biology, Nature, 402 (1999), 6761, supplement C47-C52.

    Article  Google Scholar 

  41. T. Heimo, J. Saramäki, J.-P. Onnela and K. Kaski, Spectral and network methods in the analysis of correlation matrices of stock returns, Physica A-Statistical Mechanics and its Applications, 383 (2007), 147–151.

    Article  Google Scholar 

  42. R. A. Holley and T. M. Liggett, Ergodic theorems for weakly interacting infinite systems and voter model, Annals of Probability, 3 (1975), 643–663.

    Article  MATH  MathSciNet  Google Scholar 

  43. H. Jeong, Z. Néda and A.-L. Barabási, Measuring preferential attachment for evolving networks, Europhysics Letters, 61 (2003), 567–572.

    Article  Google Scholar 

  44. P. F. Jonsson and P. A. Bates, Global topological features of cancer proteins in the human interactome, Bioinformatics, 22 (2006), 2291–2297.

    Article  Google Scholar 

  45. P. F. Jonsson, T. Cavanna, D. Zicha and P. A. Bates, Cluster analysis of networks generated through homology: automatic identification of important protein communities involved in cancer metastasis, BMC Bioinformatics, 7 (2006), 2.

    Article  Google Scholar 

  46. S. Knudsen, A Guide to Analysis of DNA Microarray Data, Wiley-Liss, 2nd edition, 2004.

    Google Scholar 

  47. N. J. Krogan, G. Cagney, H. Y. Yu, G. Q. Zhong, X. H. Guo, A. Ignatchenko, J. Li, S. Y. Pu, N. Datta, A. P. Tikuisis, T. Punna, J. M. Peregrin-Alvarez, M. Shales, X. Zhang, M. Davey, M. D. Robinson, A. Paccanaro, J. E. Bray, A. Sheung, B. Beattie, D. P. Richards, V. Canadien, A. Lalev, F. Mena, P. Wong, A. Starostine, M. M. Canete, J. Vlasblom, S. W. C. Orsi, S. R. Collins, S. Chandran, R. Haw, J. J. Rilstone, K. Gandi, N. J. Thompson, G. Musso, P. S. Onge, S. Ghanny, M. H. Y. Lam, G. Butland, A. M. Altaf-Ui, S. Kanaya, A. Shilatifard, E. O’Shea, J. S. Weissman, C. J. Ingles, T. R. Hughes, J. Parkinson, M. Gerstein, S. J. Wodak, A. Emili and J. F. Greenblatt, Global landscape of protein complexes in the yeast Saccharomyces cerevisiae, Nature, 440 (2006), 637–643.

    Article  Google Scholar 

  48. J. M. Kumpula, J.-P. Onnela, J. Saramäki, K. Kaski and J. Kertész, Emergence of communities in weighted networks, Phys. Rev. Lett., 99 (2007), 228701.

    Article  Google Scholar 

  49. J. M. Kumpula, J. Saramäki, K. Kaski and J. Kertész, Limited resolution in complex network community detection with Potts model approach, European Physical Journal B., 56 (2007), 41–45.

    Article  Google Scholar 

  50. O. Mason and M. Verwoerd, Graph theory and networks in Biology, IET Systems Biology, 1 (2007), 89–119.

    Article  Google Scholar 

  51. J. F. F. Mendes and S. N. D. and, Evolution of Networks: From Biological Nets to the Internet and WWW, Oxford University Press, Oxford, 2003.

    MATH  Google Scholar 

  52. T. Nepusz, A. Petróczi, L. Négyessy and F. Bazsó, Fuzzy communities and the concept of bridgeness in complex networks, Phys. Rev. E., 77 (2008), 016107.

    Article  MathSciNet  Google Scholar 

  53. M. E. J. Newman, Clustering and preferential attachment in growing networks, Phys. Rev. E., 64 (2001), 025102.

    Article  Google Scholar 

  54. M. E. J. Newman, Detecting community structure in networks, Eur. Phys. J. B., 38 (2004), 321–330.

    Article  Google Scholar 

  55. M. E. J. Newman, Fast algorithm for detecting community structure in networks, Phys. Rev. E., 69 (2004), 066133.

    Article  Google Scholar 

  56. M. E. J. Newman and M. Girvan, Finding and evaluating community structure in networks, Phys. Rev. E., 69 (2004), 026113.

    Article  Google Scholar 

  57. M. E. J. Newman and E. A. Leicht, Mixture models and exploratory analysis in networks, Proc. Natl. Acad. Sci. USA, 104 (2007), 9564–9569.

    Article  MATH  Google Scholar 

  58. M. E. J. Newman, S. H. Strogatz and D. J. Watts, Random graphs with arbitrary degree distribution and their applications, Phys. Rev. E., 64 (2001), 026118.

    Article  Google Scholar 

  59. J.-P. Onnela, A. Chakraborti, K. Kaski, J. Kertész and A. Kanto, Dynamics of market correlations: Taxonomy and portfolio analysis, Phys. Rev. E., 68 (2003), 056110.

    Article  Google Scholar 

  60. J.-P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, M. A. de Menezes, K. Kaski, A. L. Barabási and J. Kertész, Analysis of a large-scale weighted network of one-to-one human communication, New Journal of Physics, 9 (2007), 179.

    Article  Google Scholar 

  61. J.-P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer, K. Kaski, J. Kertész and A.-L. Barabási, Structure and tie strengths in mobile communication networks, Proc. Natl. Acad. Sci. USA, 104 (2007), 7332–7336.

    Article  Google Scholar 

  62. J.-P. Onnela, J. Saramäki, J. Kertész and K. Kaski, Intensity and coherence of motifs in weighted complex networks, Phys. Rev. E., 71 (2005), 065103.

    Article  Google Scholar 

  63. G. Palla, A.-L. Barabási and T. Vicsek, Quantifying social group evolution, Nature, 446 (2007), 664–667.

    Article  Google Scholar 

  64. G. Palla, I. Derényi, I. Farkas and T. Vicsek, Uncovering the overlapping community structure of complex networks in nature and society, Nature, 435 (2005), 814–818.

    Article  Google Scholar 

  65. G. Palla, I. Derenyi, I. Farkas, T. Vicsek, P. Pollner and D. Ábel, Free software for finding overlapping dense groups of nodes in networks, based on the clique percolation method.

    Google Scholar 

  66. G. Palla, I. Derényi and T. Vicsek, The critical point of k-clique percolation in the Erdős-Rényi graph, J. Stat. Phys., 128 (2007), 219–227.

    Article  MATH  MathSciNet  Google Scholar 

  67. G. Palla, I. J. Farkas, P. Pollner, I. Derényi and T. Vicsek, Directed network modules, New Journal of Physics, 9 (2007), 186.

    Article  Google Scholar 

  68. P. Pollner, G. Palla and T. Vicsek, Preferential attachment of communities: The same principle, but a higher level, Europhys. Lett., 73 (2006), 478–484.

    Article  MathSciNet  Google Scholar 

  69. B. Ráth and B. Tóth, Triangle percolation in mean field random graphs — with PDE, arXiv:0712.2646v1, 2007.

    Google Scholar 

  70. E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai and A.-L. Barabási, Hierarchical organization of modularity in metabolic networks, Science, 297 (2002), 1551–1555.

    Article  Google Scholar 

  71. J. Reichardt and S. Bornholdt, Detecting Fuzzy Community Structures in Complex Networks with a Potts Model, Phys. Rev. Lett., 93 (2004), 218701.

    Article  Google Scholar 

  72. J. Reichardt and S. Bornholdt, Statistical mechanics of community detection, Phys. Rev. E., 74 (2006), 016110.

    Article  MathSciNet  Google Scholar 

  73. A. W. Rives and T. Galitski, Modular organization of cellular networks, Proc. Natl. Acad. Sci. USA, 100 (2003), 1128–1133.

    Article  Google Scholar 

  74. J. Scott, Social Network Analysis: A Handbook, Sage Publications, London, 2nd edition, 2000.

    Google Scholar 

  75. S. B. Seidman, Network structure and minimum degree, Social Networks, 5, (1983), 269–287.

    Article  MathSciNet  Google Scholar 

  76. R. M. Shiffrin and K. Börner, Mapping knowledge domains, Proc. Natl. Acad. Sci. USA, 101 (2004), 5183–5185.

    Article  Google Scholar 

  77. R. D. Smith, The network of collaboration among rappers and its community structure, J. Stat. Mech., page P02006, 2006.

    Google Scholar 

  78. V. Spirin and K. A. Mirny, Protein complexes and functional modules in molecular networks, Proc. Natl. Acad. Sci. USA, 100 (2003), 12123–12128.

    Article  Google Scholar 

  79. G. Szabó and G. Fáth, Evolutionary games on graphs, Physics Reports-Review Section of Physics Letters, 446 (2007), 97–216.

    Google Scholar 

  80. G. Szabó, J. Vukov and A. Szolnoki, Phase diagrams for an evolutionary prisoner’s dilemma game on two-dimensional lattices, Phys. Rev. E., 72 (2005), 047107.

    Article  Google Scholar 

  81. R. Toivonen, J.-P. Onnela, J. Saramäki, J. Hyvönen and K. Kaski, A model for social networks, Physica A-Statistical Mechanics and its Applications, 370 (2006), 851–860.

    Google Scholar 

  82. J. R. Udry, P. S. Bearman and K. M. Harris, Public-use data set from Add Health, funded by a grant from National Institute of Child Health and Human Development.

    Google Scholar 

  83. T. Vicsek, Phase transitions and overlapping modules in complex networks, Physica A-Statistical Mechanics and its Applications, 378 (2007), 20–32.

    Article  Google Scholar 

  84. J. Vukov, G. Szabó and A. Szolnoki, Cooperation in the noisy case: Prisoner’s dilemma game on two types of regular random graphs, Phys. Rev. E., 73 (2006), 067103.

    Article  Google Scholar 

  85. D. J. Watts, P. S. Dodds and M. E. J. Newman, Identity and search in social networks, Science, 296 (2002), 1302–1305.

    Article  Google Scholar 

  86. D. M. Wilkinson and B. A. Huberman, A method for finding communities of related genes, Proc. Natl. Acad. Sci. USA, 101 (2004), 5241–5248.

    Article  Google Scholar 

  87. I. Xenarios, D. W. Rice, L. Salwinski and M. K. Baron, DIP: the Database of Interacting Proteins, Nucl. Ac. Res., 28 (2000), 289–291.

    Article  Google Scholar 

  88. S. Zhang, X. Ning and X.-S. Zhang, Identification of functional modules in a PPI network by clique percolation clustering, Comp. Biology and Chemistry, 30 (2006), 445–451.

    Article  MATH  Google Scholar 

  89. S. Zhang, R.-S. Wang and X.-S. Zhang, Uncovering fuzzy community structure in complex networks, Phys. Rev. E., 76 (2007), 046103.

    Article  Google Scholar 

  90. X. Zhu, M. Gerstein and M. Snyder, Getting connected: analysis and principles of biological networks, Genes & Development, 21 (2007), 1010–1024.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 János Bolyai Mathematical Society and Springer-Verlag

About this chapter

Cite this chapter

Palla, G., Ábel, D., Farkas, I.J., Pollner, P., Derényi, I., Vicsek, T. (2008). k-Clique Percolation and Clustering. In: Bollobás, B., Kozma, R., Miklós, D. (eds) Handbook of Large-Scale Random Networks. Bolyai Society Mathematical Studies, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69395-6_9

Download citation

Publish with us

Policies and ethics