Skip to main content

A Library of Protein Cage Architectures as Nanomaterials

  • Chapter
Viruses and Nanotechnology

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 327))

Virus capsids and other structurally related cage-like proteins such as ferritins, dps, and heat shock proteins have three distinct surfaces (inside, outside, interface) that can be exploited to generate nanomaterials with multiple functionality by design. Protein cages are biological in origin and each cage exhibits extremely homogeneous size distribution. This homogeneity can be used to attain a high degree of homogeneity of the templated material and its associated property. A series of protein cages exhibiting diversity in size, functionality, and chemical and thermal stabilities can be utilized for materials synthesis under a variety of conditions. Since synthetic approaches to materials science often use harsh temperature and pH, it is an advantage to utilize protein cages from extreme environments. In this chapter, we review recent studies on discovering novel protein cages from harsh natural environments such as the acidic thermal hot springs at Yellowstone National Park (YNP) and on utilizing protein cages as nano-scale platforms for developing nanomaterials with wide range of applications from electronics to biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

CCMV:

Cowpea chlorotic mottle virus

Dps:

DNA-binding proteins from starved cells

Dps-L:

Dps-like protein

Hsp:

Heat shock protein

MRI:

Magnetic resonance imaging

STIV:

Sulfulobus turreted icosahedral virus

TMV:

Tobacco Mosaic Virus

YNP:

Yellowstone National Park

References

  • Ackermann HW (2001) Frequency of morphological phage descriptions in the year 2000. Brief review. Arch Virol 146:843–857

    Article  PubMed  CAS  Google Scholar 

  • Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303:1818–1822

    Article  PubMed  CAS  Google Scholar 

  • Allen M, Willits D, Mosolf J, Young M, Douglas T (2002) Protein cage constrained synthesis of ferrimagnetic iron oxide nanoparticles. Adv Mater 14:1562–1565

    Article  CAS  Google Scholar 

  • Allen M, Willits D, Young M, Douglas T (2003) Constrained synthesis of cobalt oxide nanomaterials in the 12-subunit protein cage fromListeria innocua. Inorg Chem 42:6300–6305

    Article  PubMed  CAS  Google Scholar 

  • Allen MA, Bulte JWM, Liepold L, Basu G, Zywicke HA, Frank JA, Young M, Douglas T (2005) Paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast agents. Magn Reson Med 54:807–812

    Article  PubMed  CAS  Google Scholar 

  • Anderson EA, Isaacman S, Peabody DS, Wang EY, Canary JW, Kirshenbaum K (2006) Viral nanoparticles donning a paramagnetic coat: conjugation of MRI contrast agents to the MS2 capsid. Nano Lett 6:1160–1164

    Article  PubMed  CAS  Google Scholar 

  • Arap W, Pasqualini R, Ruoslahti E (1998a) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–380

    Article  CAS  Google Scholar 

  • Arap W, Pasqualini R, Ruoslahti E (1998b) Chemotherapy targeted to tumor vasculature. Curr Opin Oncol 10:560–565

    Article  CAS  Google Scholar 

  • Arap W, Haedicke W, Bernasconi M, Kain R, Rajotte D, Krajewski S, Ellerby HM, Bredesen DE, Pasqualini R, Ruoslahti E (2002) Targeting the prostate for destruction through a vascular address. Proc Natl Acad Sci U S A 99:1527–1531

    Article  PubMed  CAS  Google Scholar 

  • Basu G, Allen M, Willits D, Young M, Douglas T (2003) Metal binding to cowpea chlorotic mottle virus using terbium(III) fluorescence. J Biol Inorg Chem 8:721–725

    Article  PubMed  CAS  Google Scholar 

  • Belcher A, Flynn C, Whaley S, Mao CB, Gooch E (2001) Biomolecular recognition and control of nano magnetic and semiconductor materials. Abstr Papers Chemical Soc 222:53-POLY

    Google Scholar 

  • Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA (1994) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of ang-iogenic blood vessels. Cell 79:1157–1164

    Article  PubMed  CAS  Google Scholar 

  • Brumfield S, Willits D, Tang L, Johnson JE, Douglas T, Young M (2004) Heterologous expression of modified Cowpea chlorotic mottle bromovirus coat protein results in the assembly of protein cages with altered architectures and function. J Gen Virol 85:1049–1053

    Article  PubMed  CAS  Google Scholar 

  • Bulte JWM, Douglas T, Mann S, Frankel RB, Moskowitz BM, Brooks RA, Baumgarner CD, Vymazal J, Frank JA (1994a) Magnetoferritin: biomineralization as a novel approach in the design of iron oxide-based MR contrast agents. Inv Rad 29:S214–S216

    Article  CAS  Google Scholar 

  • Bulte JWM, Douglas T, Mann S, Frankel RB, Moskowitz BM, Brooks RA, Baumgarner CD, Vymazal J, Strub M-P, Frank JA (1994b) Magnetoferritin: characterization of a novel super-paramagnetic MR contrast agent. J Magn Res Imaging 4:497–505

    Article  CAS  Google Scholar 

  • Bulte CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb JF, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NS, Venter JC (1996) Complete genome sequence of the methanogenic archaeonMethanococcus jannaschii. Science 273:1058–1073

    Article  Google Scholar 

  • Bulte JWM, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM, Duncan ID, Frank JA (2001) Magnetodendrimers allow endo-somal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147

    Article  PubMed  CAS  Google Scholar 

  • Burritt JB, Bond CW, Doss KW, Jesaitis AJ (1996) Filamentous phage display of oligopeptide libraries. Anal Biotechnol. 238:1–13

    Article  CAS  Google Scholar 

  • Chasteen ND, Harrison PM (1999) Mineralization in ferritin: an efficient means of iron storage. J Struct Biol 126:182–194

    Article  PubMed  CAS  Google Scholar 

  • Chatterji A, Burns LL, Taylor SS, Lomonossoff GP, Johnson JE, Lin T, Porta C (2002) Cowpea mosaic virus: from the presentation of antigenic peptides to the display of active biomaterials. Intervirology 45:362–370

    Article  PubMed  CAS  Google Scholar 

  • Chatterji A, Ochoa WF, Paine M, Ratna BR, Johnson JE, Lin T (2004a) New addresses on an addressable virus nanoblock; uniquely reactive Lys residues on cowpea mosaic virus. Chem Biol 11:855–863

    Article  CAS  Google Scholar 

  • Chatterji A, Ochoa W, Shamieh L, Salakian SP, Wong SM, Clinton G, Ghosh P, Lin T, Johnson JE (2004b) Chemical conjugation of heterologous proteins on the surface of Cowpea mosaic virus. Bioconjug Chem 15:807–813

    Article  CAS  Google Scholar 

  • Chatterji A, Ochoa WF, Ueno T, Lin T, Johnson JE (2005) A virus-based nanoblock with tunable electrostatic properties. Nano Lett 5:597–602

    Article  PubMed  CAS  Google Scholar 

  • Datta A, Hooker JM, Botta M, Francis MB, Aime S, Raymond KN (2008) High relaxivity gadolinium hydroxypyridonate-viral capsid conjugates: nanosized MRI contrast agents. 1. J Am Chem Soc 130:2546–2552

    Article  PubMed  CAS  Google Scholar 

  • Douglas T (1996) Biomimetic synthesis of nanoscale particles in organized protein cages. In: Mann S (ed) Biomimetic approaches in materials science. VCH, New York, pp 91–115

    Google Scholar 

  • Douglas T, Mann S (1995) Biomolecules in the synthesis of inorganic solids. In: Meyers RA (ed) Molecular biology and biotechnology. VCH, New York, pp 466–469

    Google Scholar 

  • Douglas T, Ripoll D (1998) Electrostatic gradients in the iron storage protein ferritin. Protein Sci 7:1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Douglas T, Young M (1998) Host-guest encapsulation of materials by assembled virus protein cages. Nature (London) 393:152–155

    Article  CAS  Google Scholar 

  • Douglas T, Young M (1999) Virus particles as templates for materials synthesis. Adv Mater 11:679–681

    Article  CAS  Google Scholar 

  • Douglas T, Stark VT (2000) Nanophase cobalt oxyhydroxide mineral synthesized within the protein cage of ferritin. Inorg Chem 39:1828–1830

    Article  PubMed  CAS  Google Scholar 

  • Douglas T, Allen M, Young M (2002a) Self-assembling protein cage systems and applications in nanotechnology. In: Fahnstock SR, Steinbuchel A (eds) Polyamides and complex proteina-ceous materials I, Vol. 7. Wiley-VCH, Weinheim, p 517

    Google Scholar 

  • Douglas T, Strable E, Willits D, Aitouchen A, Libera M, Young M (2002b) Protein engineering of a viral cage for constrained nano-materials synthesis. Adv Mater 14:415–418

    Article  CAS  Google Scholar 

  • Douglas T, Allen M, Klem M, Gilmore K, Idzerda Y, Young M (2004) Engineered protein cages for nanomaterials. Abstr Papers Am Chem Soc 227:U519–U519

    Google Scholar 

  • Endo M, Fujitsuka M, Majima T (2007) Porphyrin light-harvesting arrays constructed in the recombinant tobacco mosaic virus scaffold. Chem Eur J 13:8660–8666

    Article  CAS  Google Scholar 

  • Ensign D, Young MJ, Douglas T (2004) Photocatalytic synthesis of copper colloids from Cu(II) by the ferrihydrite core of ferritin. Inorg Chem 43:3441–3446

    Article  PubMed  CAS  Google Scholar 

  • Flenniken ML, Willits DA, Brumfield S, Young MJ, Douglas T (2003) The small heat shock protein cage fromMethanococcus jannaschiiis a versatile nanoscale platform for genetic and chemical modification. Nano Lett 3:1573–1576

    Article  CAS  Google Scholar 

  • Flenniken ML, Allen M, Young M, Douglas T (2004) Viruses as host assemblies. In: Encyclopedia of supramolecular chemistry. Steed AJW (ed) NMarcel Dekker, ew York City, pp 1563–1568

    Google Scholar 

  • Flenniken ML, Liepold LO, Crowley BE, Willits DA, Young MJ, Douglas T (2005) Selective attachment and release of a chemotherapeutic agent from the interior of a protein cage architecture. Chem Commun (Camb) 447–449

    Google Scholar 

  • Flenniken ML, Willits DA, Harmsen AL, Liepold LO, Harmsen AG, Young MJ, Douglas T (2006) Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture. Chem Biol 13:161–170

    Article  PubMed  CAS  Google Scholar 

  • Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA (1995) Definition of two angiogenic pathways by distinct alpha v integrins. Science 270:1500–1502

    Article  PubMed  CAS  Google Scholar 

  • Gillitzer E, Willits D, Young M, Douglas T (2002) Chemical modification of a viral cage for mul-tivalent presentation. Chem Commun (Camb) 2390–2391

    Google Scholar 

  • Gillitzer E, Succi P, Young M, Douglas T (2006) Controlled ligand display on a symmetrical protein-cage architecture through mixed assembly. Small 2:962–966

    Article  PubMed  CAS  Google Scholar 

  • Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275:161–203

    Article  PubMed  Google Scholar 

  • Harrison PM, Banyard SH, Hoare RJ, Russell SM, Treffry A (1976) The structure and function of ferritin. Ciba Found Symp 19–40

    Google Scholar 

  • Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156:1363–1380

    PubMed  CAS  Google Scholar 

  • Hikono T, Matsumura T, Miura A, Uraoka Y, Fuyuki T, Takeguchi M, Yoshii S, Yamashita I (2006) Electron confinement in a metal nanodot monolayer embedded in silicon dioxide produced using ferritin protein. Appl Phys Lett 88:023108

    Article  CAS  Google Scholar 

  • Hooker JM, Kovacs EW, Francis MB (2004) Interior surface modification of bacteriophage MS2. J Am Chem Soc 126:3718–3719

    Article  PubMed  CAS  Google Scholar 

  • Hooker JM, Datta A, Botta M, Raymond KN, Francis MB (2007) Magnetic resonance contrast agents from viral capsid shells: a comparison of exterior and interior cargo strategies. Nano Lett 7:2207–2210

    Article  PubMed  CAS  Google Scholar 

  • Hosein HA, Strongin DR, Allen M, Douglas T (2004) Iron and cobalt oxide and metallic nano-particles prepared from ferritin. Langmuir 20:10283–10287

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa K, Uraoka Y, Punchaipetch P, Yano H, Hatayama T, Fuyuki T, Yamashita I (2007) Low-temperature polycrystalline silicon thin film transistor flash memory with ferritin. Jpn J Appl Phys 46:L804–L806

    Article  CAS  Google Scholar 

  • Iwahori K, Yoshizawa K, Muraoka M, Yamashita I (2005) Fabrication of ZnSe nanoparticles in the apoferritin cavity by designing a slow chemical reaction system. Inorg Chem 44:6393–6400

    Article  PubMed  CAS  Google Scholar 

  • Johnson JE, Speir JA (1997) Quasi-equivalent viruses: a paradigm for protein assemblies. J Mol Biol 269:665–675

    Article  PubMed  CAS  Google Scholar 

  • Kaiser CR, Flenniken ML, Gillitzer E, Harmsen AL, Harmsen AG, Jutila MA, Douglas T, Young MJ (2007) Biodistribution studies of protein cage nanoparticles demonstrate broad tissue distribution and rapid clearance in vivo. Int J Nanomed 2:715–733

    CAS  Google Scholar 

  • Kawashita M, Tanaka M, Kokubo T, Inoue Y, Yao T, Hamada S, Shinjo T (2005) Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer. Biomater 26:2231–2238

    Article  CAS  Google Scholar 

  • Kim I, Hosein HA, Strongin DR, Douglas T (2002) Photochemical reactivity of ferritin for Cr(VI) reduction. Chem Mater 14:4874–4879

    Article  CAS  Google Scholar 

  • Kim KK, Kim R, Kim SH (1998a) Crystal structure of a small heat-shock protein. Nature 394:595–599

    Article  CAS  Google Scholar 

  • Kim KK, Yokota H, Santoso S, Lerner D, Kim R, Kim SH (1998b) Purification, crystallization, and preliminary X-ray crystallographic data analysis of small heat shock protein homolog fromMethanococcus jannaschii, a hyperthermophile. J Struct Biol 121:76–80

    Article  CAS  Google Scholar 

  • Klem MT, Willits D, Young M, Douglas T (2003) 2-D array formation of genetically engineered viral cages on Au surfaces and imaging by atomic force microscopy. J Am Chem Soc 125:10806–10807

    Article  PubMed  CAS  Google Scholar 

  • Klem M, Willits D, Solis DJ, Belcher A, Young M, Douglas T (2005a) Bio-inspired synthesis of protein-encapsulated CoPt nanoparticles. Adv Funct Mater 15:1489–1494

    Article  CAS  Google Scholar 

  • Klem M, Young M, Douglas T (2005b) Biomimetic magnetic nanoparticles. Mater Today 8:28–37

    Article  CAS  Google Scholar 

  • Klem MT, Mosolf J, Young M, Douglas T (2008) Photochemical mineralization of europium titanium, iron oxyhydroxide nanoparticles in the ferritin protein cage. Inorg Chem 47:2237–2239

    Article  PubMed  CAS  Google Scholar 

  • Koivunen E, Wang B, Ruoslahti E (1995) Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Biotechnology (N Y) 13:265–270

    Article  CAS  Google Scholar 

  • Kramer RM, Li C, Carter DC, Stone MO, Naik RR (2004) Engineered protein cages for nanoma-terial synthesis. J Am Chem Soc 126:13282–13286

    Article  PubMed  CAS  Google Scholar 

  • Le Clainche L, Plancque G, Amekraz B, Moulin C, Pradines-Lecomte C, Peltier G, Vita C (2003) Engineering new metal specificity in EF-hand peptides. J Biol Inorg Chem 8:334–340

    PubMed  Google Scholar 

  • Lewis JD, Destito G, Zijlstra A, Gonzalez MJ, Quigley JP, Manchester M, Stuhlmann H (2006) Viral nanoparticles as tools for intravital vascular imaging. Nat Med 12:354–360

    Article  PubMed  CAS  Google Scholar 

  • Liepold LO, Willits D, Oltrogge L, Allen M, Young M, Douglas T (2007) Viral capsids as MRI contrast agents. Magn Reson Med 58:871–879

    Article  PubMed  CAS  Google Scholar 

  • Luderer AA, Borrelli NF, Panzarino JN, Mansfield GR, Hess DM, Brown JL, Barnett EH, Hahn EW (1983) Glass-ceramic-mediated, magnetic-field-induced localized hyperthermia: response of a murine mammary carcinoma. Radiat Res 94:190–198

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    Article  PubMed  CAS  Google Scholar 

  • Maeder DL, Weiss RB, Dunn DM, Cherry JL, Gonzalez JM, DiRuggiero J, Robb FT (1999) Divergence of the hyperthermophilic archaeaPyrococcus furiosusandP. horikoshiiinferred from complete genomic sequences. Genetics 152:1299–1305

    PubMed  CAS  Google Scholar 

  • Mao C, Flynn CE, Hayhurst A, Sweeney R, Qi J, Georgiou G, Iverson B, Belcher AM (2003) Viral assembly of oriented quantum dot nanowires. Proc Natl Acad Sci U S 100:6946–6951

    Article  CAS  Google Scholar 

  • Mao C, Solis DJ, Reiss BD, Kottmann ST, Sweeney RY, Hayhurst A, Georgiou G, Iverson B, Belcher AM (2004) Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 303:213–217

    Article  PubMed  CAS  Google Scholar 

  • Matsui T, Matsukawa N, Iwahori K, Sano KI, Shiba K, Yamashita I (2007) Direct production of a two-dimensional ordered array of ferritin-nanoparticles on a silicon substrate. Jpn J Appl Phys 46:L713–L715

    Article  CAS  Google Scholar 

  • Medintz IL, Sapsford KE, Konnert JH, Chatterji A, Lin T, Johnson JE, Mattoussi H (2005) Decoration of discretely immobilized cowpea mosaic virus with luminescent quantum dots. Langmuir 21:5501–5510

    Article  PubMed  CAS  Google Scholar 

  • Miller RA, Presley AD, Francis MB (2007) Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. J Am Chem Soc 129:3104–3109

    Article  PubMed  CAS  Google Scholar 

  • Miura A, Hikono T, Matsumura T, Yano H, Hatayama T, Uraoka Y, Fuyuki T, Yoshii S, Yamashita I (2006) Floating nanodot gate memory devices based on biomineralized inorganic nanodot array as a storage node. Jpn J Appl Phys 45:L1–L3

    Article  CAS  Google Scholar 

  • Narberhaus F (2002) Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66:64–93

    Article  PubMed  CAS  Google Scholar 

  • Nkere UU, Walter NM, Nikandrov VV, Gratzel CK, Moser JE, Gratzel MJ (1997) Light induced redox reactions involving mammalian ferritin as a photocatalyst. Photochem Photobiol B 41:83–89

    Article  Google Scholar 

  • Parker MJ, Allen MA, Ramsay B, Klem MT, Young M, Douglas T (2008) Expanding the temperature range of biomimetic synthesis using a ferritin from the hyperthermophilePyrococcus furiosus. Chem Mater 20:1541–1547

    Article  CAS  Google Scholar 

  • Pasqualini R, Ruoslahti E (1996a) Organ targeting in vivo using phage display peptide libraries. Nature 380:364–366

    Article  CAS  Google Scholar 

  • R, Ruoslahti E (1996b) Tissue targeting with phage peptide libraries. Mol Psychiatry 1:423

    CAS  Google Scholar 

  • Pasqualini R, Koivunen E, Ruoslahti E (1995) A peptide isolated from phage display libraries is a structural and functional mimic of an RGD-binding site on integrins. J Cell Biol 130:1189–1196

    Article  PubMed  CAS  Google Scholar 

  • Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoslahti E (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60:722–727

    PubMed  CAS  Google Scholar 

  • Prasuhn DE, Yeh RM, Obenaus A, Manchester M, Finn MG (2007) Viral MRI contrast agents: coordination of Gd by native virions and attachment of Gd complexes by azide-alkyne cycloaddition. Chem Comm 28:1269–1271

    Article  CAS  Google Scholar 

  • Rae CS, Khor IW, Wang Q, Destito G, Gonzalez MJ, Singh P, Thomas DM, Estrada MN, Powell E, Finn MG, Manchester M (2005) Systemic trafficking of plant virus nanoparticles in mice via the oral route. Virology 343:224–235

    Article  PubMed  CAS  Google Scholar 

  • Raja KS, Wang Q, Finn MG (2003a) Icosahedral virus particles as polyvalent carbohydrate display platforms. Chembiochem 4:1348–1351

    Article  CAS  Google Scholar 

  • Raja KS, Wang Q, Gonzalez MJ, Manchester M, Johnson JE, Finn MG (2003b) Hybrid virus-polymer materials. 1. Synthesis and properties of PEG-decorated cowpea mosaic virus. Biomacromolecules 4:472–476

    Article  CAS  Google Scholar 

  • Ramsay B, Wiedenheft B, Allen M, Gauss GH, Lawrence CM, Young M, Douglas T (2006) Dps-like protein from the hyperthermophilic archaeonPyrococcus furiosus. J Inorg Biochem 100:1061–1068

    Article  PubMed  CAS  Google Scholar 

  • Reddy VS, Nataraja, P, Okerberg B, Li K, Damodaran K V, et al (2001) Virus Partilce Explorer (VIPER), a website for virus capsid structures and their computational analyses. J Virol 75:11943–11947

    Article  PubMed  CAS  Google Scholar 

  • Rice G, Stedman K, Snyder J, Wiedenheft B, Willits D, Brumfield S, McDermott T, Young MJ (2001) Viruses from extreme thermal environments. Proc Natl Acad Sci U S A 98:13341–13345

    Article  PubMed  CAS  Google Scholar 

  • Rice G, Tang L, Stedman K, Roberto F, Sphuler J, Gillitzer E, Johnson JE, Douglas T, Young M (2004) The structure of a thermophilic archaeal virus shows a double-stranded DNA viral capsid type that spans all three domains of life. Proc Natl Acad Sci U S A 101:7716–7720

    Article  PubMed  CAS  Google Scholar 

  • Ruoslahti E (2000) Targeting tumor vasculature with homing peptides from phage display. Semin Cancer Biol 10:435–442

    Article  PubMed  CAS  Google Scholar 

  • Schlick TL, Ding Z, Kovacs EW, Francis MB (2005) Dual-surface modification of the tobacco mosaic virus. J Am Chem Soc 127:3718–3723

    Article  PubMed  CAS  Google Scholar 

  • Schneemann A, Young MJ (2003) Viral assembly using heterologous expression systems and cell extracts. Adv Protein Chem 64:1–36

    Article  PubMed  CAS  Google Scholar 

  • Scott JK, Smith GP (1990) Searching for peptide ligands with an epitope library. Science 249:386–390

    Article  PubMed  CAS  Google Scholar 

  • Seeman NC, Belcher AM (2002) Emulating biology: Building nanostructures from the bottom up. Proc Natl Acad Sci U S A 99:6451–6455

    Article  PubMed  CAS  Google Scholar 

  • Singh P, Prasuhn D, Yeh RM, Destito G, Rae CS, Osborn K, Finn MG, Manchester M (2007) Bio-distribution, toxicity and pathology of cowpea mosaic virus nanoparticles in vivo. J Control Release 120:41–50

    Article  PubMed  CAS  Google Scholar 

  • Smith GP, Petrenko VA (1997) Phage display. Chem Rev 97:391–410

    Article  PubMed  CAS  Google Scholar 

  • Snyder JC, Stedman K, Rice G, Wiedenheft B, Spuhler J, Young MJ (2003) Viruses of hyperther-mophilic Archaea. Res Microbiol 154:474–482

    Article  PubMed  CAS  Google Scholar 

  • Speir JA, Munshi S, Wang G, Baker TS, Johnson JE (1995) Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 3:63–78

    Article  PubMed  CAS  Google Scholar 

  • Stefanini S, Cavallo S, Montagnini B, Chiancone E (1999) Incorporation of iron by the unusual dodecameric ferritin fromListeria innocua. Biochem J 338:71–75

    Article  PubMed  CAS  Google Scholar 

  • Strable E, Johnson JE, Finn MG (2004) Natural nanochemical building blocks: icosahedral virus particles organized by attached oligonucleotides. Nano Lett 4:1385–1389

    Article  CAS  Google Scholar 

  • Su M, Cavallo S, Stefanini S, Chiancone E, Chasteen ND (2005) The so-calledListeria innocuaferritin is a Dps protein. Iron incorporation, detoxification, DNA protection properties. Biochemistry 44:5572–5578

    Article  PubMed  CAS  Google Scholar 

  • Suci PA, Berglund DL, Liepold L, Brumfield S, Pitts B, Davison W, Oltrogge L, Hoyt KO, Codd S, Stewart PS, Young M, Douglas T (2007) High-density targeting of a viral multifunctional nanoplatform to a pathogenic, biofilm-forming bacterium. Chem Biol 14:387–398

    Article  PubMed  CAS  Google Scholar 

  • Uchida M, Flenniken ML, Allen M, Willits DA, Crowley BE, Brumfield S, Willis AF, Jackiw L, Jutila M, Young MJ, Douglas T (2006) Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. J Am Chem Soc 128:16626–16633

    Article  PubMed  CAS  Google Scholar 

  • Varpness Z, Peters JW, Young M, Douglas T (2005) Biomimetic synthesis of a H2 catalyst using a protein cage architecture. Nano Lett 5:2306–2309

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Kaltgrad E, Lin T, Johnson JE, Finn MG (2002a) Natural supramolecular building blocks. Wild-type cowpea mosaic virus. Chem Biol 9:805–811

    Article  CAS  Google Scholar 

  • Wang Q, Lin T, Johnson JE, Finn MG (2002b) Natural supramolecular building blocks. Cysteine-added mutants of cowpea mosaic virus. Chem Biol 9:813–819

    Article  CAS  Google Scholar 

  • Wang Q, Lin TW, Tang L, Johnson JE, Finn MG (2002c) Icosahedral virus particles as addressable nanoscale building blocks. Angew Chem Int Ed. 41:459–462

    Article  CAS  Google Scholar 

  • Whaley SR, English DS, Hu EL, Barbara PF, Belcher AM (2000) Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405:665–668

    Article  PubMed  CAS  Google Scholar 

  • Wiedenheft B, Mosolf J, Willits D, Yeager M, Dryden KA, Young M, Douglas T (2005) From the cover: an archaeal antioxidant: characterization of a Dps-like protein fromSulfolobus solfataricus. Proc Natl Acad Sci U S A 102:10551–10556

    Article  PubMed  CAS  Google Scholar 

  • Wikipedia (2005) Wikipedia Free Encyclopedia, Wikipedia

    Google Scholar 

  • Yamada K, Yoshii S, Kumagai S, Miura A, Uraoka Y, Fuyuki T, Yamashita I (2007) Effects of dot density and dot size on charge injection characteristics in nanodot array produced by protein supramolecules. Jpn J Appl Phys 46:7549–7553

    Article  CAS  Google Scholar 

  • Yang XK, Chiancone E, Stefanini S, Ilari A, Chasteen ND (2000) Iron oxidation and hydrolysis reactions of a novel ferritin from Listeria innocua. Biochem J 349:783–786

    PubMed  CAS  Google Scholar 

  • Zhao X, Fox JM, Olson NH, Baker TS, Young MJ (1995) In vitro assembly of cowpea chlorotic mottle virus from coat protein expressed in Escherichia coli and in vitro-transcribed viral cDNA. Virology 207:486–494

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Flenniken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flenniken, M.L., Uchida, M., Liepold, L.O., Kang, S., Young, M.J., Douglas, T. (2009). A Library of Protein Cage Architectures as Nanomaterials. In: Manchester, M., Steinmetz, N.F. (eds) Viruses and Nanotechnology. Current Topics in Microbiology and Immunology, vol 327. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69379-6_4

Download citation

Publish with us

Policies and ethics