Skip to main content

Multiple Comparisons/Testing Issues

  • Chapter
  • First Online:
Handbook on Analyzing Human Genetic Data

Abstract

The statistical testing of multiple genetic markers in genetic linkage and association studies is discussed and shown to lead to a multiple-testing problem. Various solutions are discussed and demonstrated on published data. The false discovery rate (FDR) and several approaches of estimating it, are mentioned. Randomization (permutation) testing is highly recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clerget-Darpoux F, Babron MC, Bonaiti-Pellie C (1987) Power and robustness of the linkage homogeneity test in genetic analysis of common disorders. J Psychiatr Res 21:625–630

    Article  CAS  PubMed  Google Scholar 

  2. Sherrington R, Brynjolfsson J, Petursson H, Potter M, Dudleston K, Barraclough B, Wasmuth J, Dobbs M, Gurling H (1988) Localization of a susceptibility locus for schizophrenia on chromosome 5. Nature 336:164–167

    Article  CAS  PubMed  Google Scholar 

  3. Bonferroni CE (1936) Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del Istituto Superiore di Scienze Economiche e Commerciali di Firenze 8:3–62

    Google Scholar 

  4. Cheverud JM (2001) A simple correction for multiple comparisons in interval mapping genome scans. Heredity 87:52–58

    Article  CAS  PubMed  Google Scholar 

  5. Devlin B, Roeder K, Wasserman L (2003) Analysis of multilocus models of association. Genet Epidemiol 25:36–47

    Article  CAS  PubMed  Google Scholar 

  6. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100:9440–9445

    Article  CAS  PubMed  Google Scholar 

  7. Efron B (2004) Large-Scale Simultaneous Hypothesis Testing: The Choice of a Null Hypothesis. Journal of the American Statistical Association 99:96–104

    Article  Google Scholar 

  8. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125:279–284

    Article  CAS  PubMed  Google Scholar 

  9. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389. Epub 2005 Mar 2010

    Google Scholar 

  10. Fisher RA (1935) The design of experiments. Oliver & Boyd, Edinburgh

    Google Scholar 

  11. Manly BFJ (2007) Randomization, bootstrap, and Monte Carlo methods in biology. Chapman & Hall/CRC, Boca Raton, FL

    Google Scholar 

  12. Nijenhuis A, Wilf HS (1978) Combinatorial algorithms for computers and calculators. Academic, New York

    Google Scholar 

  13. Sham PC, Curtis D (1995) Monte Carlo tests for associations between disease and alleles at highly polymorphic loci. Ann Hum Genet 59:97–105

    Article  CAS  PubMed  Google Scholar 

  14. Kimmel G, Shamir R (2006) A fast method for computing high-significance disease association in large population-based studies. Am J Hum Genet 79:481–492

    Article  CAS  PubMed  Google Scholar 

  15. Skol AD, Scott LJ, Abecasis GR, Boehnke M (2006) Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 38:209–213. Epub 2006 Jan 2015

    Google Scholar 

  16. Lazzeroni LC, Lange K (1998) A conditional inference framework for extending the transmission/disequilibrium test. Hum Hered 48:67–81

    Article  CAS  PubMed  Google Scholar 

  17. Hoh J, Wille A, Ott J (2001) Trimming, weighting, and grouping SNPs in human case-control association studies. Genome Res 11:2115–2119

    Article  CAS  PubMed  Google Scholar 

  18. McIntyre LM, Martin ER, Simonsen KL, Kaplan NL (2000) Circumventing multiple testing: a multilocus Monte Carlo approach to testing for association. Genet Epidemiol 19:18–29

    Article  CAS  PubMed  Google Scholar 

  19. Becker T, Cichon S, Jonson E, Knapp M (2005) Multiple testing in the context of haplotype analysis revisited: application to case-control data. Ann Hum Genet 69:747–756

    Article  CAS  PubMed  Google Scholar 

  20. Hoh J, Ott J (2000) Scan statistics to scan markers for susceptibility genes. Proc Natl Acad Sci U S A 97:9615–9617

    Article  CAS  PubMed  Google Scholar 

  21. Zheng G, Freidlin B, Gastwirth JL (2006) Comparison of robust tests for genetic association using case-control studies. IMS Lecture Notes-Monograph Series 49:253–265

    Article  Google Scholar 

  22. Matthews AG, Haynes C, Liu C, Ott J (2008) Collapsing SNP genotypes in case-control genome-wide association studies increases the type I error rate and power. Statistical Applications in Genetics and Molecular Biology 7:Art. 23

    Google Scholar 

  23. Zhang Q, Wang S, Ott J (2008) Combining identity by descent and association in genetic case-control studies. BMC Genet 9:42

    Article  PubMed  Google Scholar 

  24. Fung HC, Scholz S, Matarin M, Simon-Sanchez J, Hernandez D, Britton A, Gibbs JR, Langefeld C, Stiegert ML, Schymick J, Okun MS, Mandel RJ, Fernandez HH, Foote KD, Rodriguez RL, Peckham E, De Vrieze FW, Gwinn-Hardy K, Hardy JA, Singleton A (2006) Genome-wide genotyping in Parkinson’s disease and neurologically normal controls: first stage analysis and public release of data. Lancet Neurol 5:911–916

    Article  CAS  PubMed  Google Scholar 

  25. Balding DJ (2006) A tutorial on statistical methods for population association studies. Nat Rev Genet 7:781–791

    Article  CAS  PubMed  Google Scholar 

  26. Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  CAS  PubMed  Google Scholar 

  27. Pe’er I, Yelensky R, Altshuler D, Daly MJ (2008) Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol 32:381–385

    Article  PubMed  Google Scholar 

  28. Ott J (2004) Association of genetic loci: Replication or not, that is the question. Neurology 63:955–958

    PubMed  Google Scholar 

  29. Gotzsche PC (2006) Believability of relative risks and odds ratios in abstracts: cross sectional study. Bmj 333:231–234

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingrun Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, Q., Ott, J. (2009). Multiple Comparisons/Testing Issues. In: Handbook on Analyzing Human Genetic Data. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69264-5_9

Download citation

Publish with us

Policies and ethics