Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 191))

Abstract

Our knowledge of nitric oxide (NO) as a crucial endogenous signalling molecule continues to expand. Many, but not all, of the actions of NO are mediated by activation of soluble guanylyl cyclase (sGC) in target tissues. The aim of this chapter is to encapsulate the functions of NO in mammalian biology, tied to the chemistry of this unusual signalling entity. The experimental usefulness and therapeutic potential of the most widely utilised NO donor drugs is reviewed, with special consideration given to the importance of choosing the correct NO donor for any given experiment, in vitro, in vivo or in clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-Soud HM, Ichimori K, Presta A, Stuehr DJ (2000). Electron transfer, oxygen binding and nitric oxide feedback inhibition in endothelial nitric oxide synthase. J Biol Chem 275:17349–17357.

    Article  PubMed  CAS  Google Scholar 

  • Al-Sa'doni H, Ferro A (2000). S-Nitrosothiols:a class of nitric oxide-donor drugs. Clin Sci (Lond) 98:507–20.

    Article  Google Scholar 

  • Axelsson KL, Andersson RG (1983). Tolerance towards nitroglycerin, induced in vivo, is correlated to a reduced cGMP response and an alteration in cGMP turnover. Eur J Pharmacol 88:71–9.

    Article  PubMed  CAS  Google Scholar 

  • Bennett BM, McDonald BJ, Nigam R, Simon WC (1994). Biotransformation of organic nitrates and vascular smooth muscle cell function. Trends Pharmacol Sci 15:245–9.

    Article  PubMed  CAS  Google Scholar 

  • Butler AR, Megson IL (2002). Non-heme iron-nitrosyls in biology. Chem Rev 102:1155–1165.

    Article  PubMed  CAS  Google Scholar 

  • Butler AR, Megson IL, Wright PG (1998). Diffusion of nitric oxide and scavenging by blood in the vasculature. Biochim Biophys Acta 1425:168–176.

    PubMed  CAS  Google Scholar 

  • Chen Z, Zhang J, Stamler JS (2002). Identification of the enzymatic mechanism of nitroglycerin bioactivation. Proc Natl Acad Sci USA 99:8306–11.

    Article  PubMed  CAS  Google Scholar 

  • Chung SJ, Fuung HL (1990). Identification of the subcellular site for nitroglycerin metabolism to nitric oxide in bovine coronary smooth muscle cells. J Pharmacol Exp Ther 253:614–9.

    PubMed  CAS  Google Scholar 

  • Crane MS, Rossi AG, Megson IL (2005). A potential role for extracellular nitric oxide generation in cGMP-independent inhibition of human platelet aggregation:biochemical and pharmacological considerations. Br J Pharmacol 144:849–859.

    Article  PubMed  CAS  Google Scholar 

  • Crow JP, Beckman JS (1995). Reactions between nitric oixde, superoxide and peroxynitrite:footprints of peroxynitrite in vivo. Adv Pharmacol 34:17–43.

    Article  PubMed  CAS  Google Scholar 

  • De Belder AJ, MacAllister R, Radomski MW, Moncada S, Vallance PJ (1994). Efects of S-nitroso-glutathione in the human forearm circulation:evidence for selective inhibition of platelet activation. Cardiovasc Res 28:691–4.

    Article  PubMed  Google Scholar 

  • De La Lande IS, Stepien JM, Philpott AC, Hughes PA, Stafford I, Horowitz JD (2004). Aldehyde dehydrogenase, nitric oxide synthase and superoxide in ex vivo nitrate tolerance in rat aorta. Eur J Pharmacol 496:141–9.

    Article  PubMed  CAS  Google Scholar 

  • Del Soldato P, Sorrentino R, Pinto A (1999). NO-aspirins:a class of new anti-inflammatory and antithrombotic agents. Trends Pharmacol Sci 20:319–323.

    Article  PubMed  CAS  Google Scholar 

  • Di Fabio J, Ji Y, Vasiliou V, Thatcher GR, Bennett BM (2003). Role of mitochondrial aldehyde dehydrogenase in nitrate tolerance. Mol Pharmacol 64:1109–16.

    Article  Google Scholar 

  • Drago RS, Paulik FE (1960). The reaction of nitrogen(II) oxide with diethylamine. Journal of the American Chemical Society 82:96–98.

    Article  CAS  Google Scholar 

  • Flitney FW, Megson IL, Flitney DE and Butler AR (1992). Iron sulphur cluster nitrosyls, a novel class of nitric oxide generator:mechanism of vasodilator action on rat isolated tail artery. Br J Pharmacol 107:842–848.

    PubMed  CAS  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980 288:373–6.

    Article  Google Scholar 

  • Gori T, Parker JD (2002a). Nitrate tolerance:a unifying hypothesis. Circulation 106:2510–3.

    Article  Google Scholar 

  • Gori T, Parker JD (2002b). The puzzle of nitrate tolerance:pieces smaller than we thought?. Circulation 106:2404–8.

    Article  Google Scholar 

  • Hakim TS, Sugimori K, Camporesi EM, Anderson G (1996). Half-life of nitric oxide in aqueous solutions with and without haemoglobin. Physiol Meas 17:267–277.

    Article  PubMed  CAS  Google Scholar 

  • Han TH, Hyduke DR, Vaughn MW, Fukuto JM, Liao JC (2002). Nitric oixe reaction with red blood cells and hemoglobin under heterogeneous conditions. Poc Natl Acad Sci USA 99:7763–7768.

    Article  CAS  Google Scholar 

  • Hayward CS, Macdonald PS, Keogh AM (2001). Inhaled nitric oxide in cardiology. Expert Opin Investig Drugs 10:1947–1956.

    Article  PubMed  CAS  Google Scholar 

  • Homer KL, Wanstall JC (2002). Inhibition of rat platelet aggregation by the diazeniumdiolate nitric oxide donor MAHMA NONOate. Br J Pharmacol 137:1071–1081.

    Article  PubMed  CAS  Google Scholar 

  • Ignarro LJ (2002). After 130 years, the molecular mechanism of action of nitroglycerin is revealed. Proc Natl Acad Sci U S A 99:7816–7.

    Article  PubMed  CAS  Google Scholar 

  • Keefer LK (2005). Nitric oxide (NO)- and nitroxyl (HNO)-generating diazeniumdiolates (NONOates):emerging commercial opportunities. Curr Top Med Chem. 5:625–36.

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Rybalkin SD, Pi X, Wang Y, Zhang C, Munzel T, Beavo JA, Berk BC, Yan C (2001). Up-regulation of phosphodiesterase 1A1 expression is associated with the development of nitrate tolerance. Circulation 104:2338–43.

    Article  PubMed  CAS  Google Scholar 

  • Kleschyov AL, Oelze M, Daiber A, Huang Y, Mollnau H, Schulz E, Sydow K, Fichtlscherer B, Mulsch A, Munzel T (2003). Does nitric oxide mediate the vasodilator activity of nitroglyc-erin?. Circ Res 93:e104–12.

    Article  PubMed  CAS  Google Scholar 

  • Kleschyov AL, Wenzel P, Munzel T (2007). Electron paramagnetic resonance (EPR) spin trapping of biological nitric oxide. J Chromatogr B Analyt Technol Biomed Life Sci. 851:12–20.

    Article  PubMed  CAS  Google Scholar 

  • Kojda G, Hacker A, Noack E (1998). Effects of nonintermittent treatment of rabbits with pen-taerythritol tetranitrate on vascular reactivity and superoxide production. Eur J Pharmacol 355:23–31.

    Article  PubMed  CAS  Google Scholar 

  • Lancaster JR (1996). Diffusion of free nitric oxide. Methods Enzymol 268:31–50.

    Article  Google Scholar 

  • MacAllister RJ, Calver AL, Riezebos J, Collier J, Vallance P (1995). Relative potency and arteriovenous selectivity of nitrovasodilators on human blood vessels:an insight into the targeting of nitric oxide delivery. J Pharmacol Exp Ther 273:154–60.

    PubMed  CAS  Google Scholar 

  • Lewis RS, Deen WM (1994). Kinetics of the reaction of nitric oxide with oxygen in aqueous solutions. Chem Res Toxicol 7:568–574.

    Article  CAS  Google Scholar 

  • Malinsky T, Taha Z (1992). Nitric oxide release from a single cell measured by a porphyrinic-based microsensor. Nature 358:676–678.

    Article  Google Scholar 

  • Maragos CM, Morley D, Wink DA, Dunams TM, Saavedra JE, Hoffman A, Bove AA, Isaac L, Hrabie JA, Keefer LK (1991). Complexes of.NO with nucleophiles as agents for the controlled biological release of nitric oxide. Vasorelaxant effects. J Med Chem 34:3242–7.

    CAS  Google Scholar 

  • Mayer B, Pfeiffer S, Schrammel A, Koesling D, Schmidt K, Brunner F (1998). A new pathway of nitric oxide/cyclic GMP signaling involving S-nitrosoglutathione. J Biol Chem 273:3264–70.

    Article  PubMed  CAS  Google Scholar 

  • Mollnau H, Wenzel P, Oleze M, Trieber N, Pautz A, Schulz E, Scumacher S, Reifenberg K, Stalleicken D, Scharffetter-Kochanek K, Kleinert H, Munzel Y, Daiber A (2006). Mitochon-drial oxidative stress and nitrate tolerance-comparison of nitroglycerin and pentaerithrityl tetranitrate in Mn-SOD+/- mice. BMC Cardiovasc Disord 6:44.

    Article  CAS  Google Scholar 

  • Megson IL (2002). Novel S-nitrosothiols:a means for targeted nitric oxide delivery?. Drugs Future 27:777–784.

    Article  CAS  Google Scholar 

  • Megson IL, Webb DJ (2002). Nitric oxide donor drugs:current status and future trends. Expert Opin Investig Drugs 11:587–601.

    Article  PubMed  CAS  Google Scholar 

  • Miller MR, Grant S, Wadworth RM (2008). Selective arterial dilatation by glyceryl trinitrate is not associated with NO formation in vitro. J Vasc Res, in press.

    Google Scholar 

  • Miller MR, Hanspal IS, Hadoke PW, Newby DE, Rossi AG, Webb DJ, Megson IL (2003). A novel S-nitrosothiol causes prolonged and selective inhibition of platelet adhesion at sites of vascular injury. Cardiovasc Res:57:853–60.

    Article  PubMed  CAS  Google Scholar 

  • Miller MR, Megson IL (2007). Recent developments in nitric oxide donor drugs. Br J Pharmacol 151:305–21.

    Article  PubMed  CAS  Google Scholar 

  • Mollace V, Muscoli C, Masini E, Cuzzocrea S, Salvemini D (2005). Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors. Pharmacol Rev 57:217–252.

    Article  PubMed  CAS  Google Scholar 

  • Moncada S, Palmer RM, Higgs EA (1991). Nitric oxide:physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–42.

    PubMed  CAS  Google Scholar 

  • Munzel T, Sayegh H, Freeman BA, Tarpey MM, Harrison DG (1995). Evidence for enhanced vascular superoxide anion production in nitrate tolerance. A novel mechanism underlying tolerance and cross-tolerance. J Clin Invest 95:187–94.

    Article  PubMed  CAS  Google Scholar 

  • Palmer RM, Ferrige AG, Moncada S (1987). Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–6.

    Article  PubMed  CAS  Google Scholar 

  • Pelletier MM, Kleinbongard P, Ringwood L, Hito R, Hunter CJ, Schechter AN, Gladwin MT, Dejam A (2006). The measurement of blood and plasma nitrite by chemiluminescence:pitfalls and solutions. Free Radic Biol Med. 41:541–8.

    Article  PubMed  CAS  Google Scholar 

  • Plane F, Hurrell A, Jeremy JY, Garland CJ (1996). Evidence that potassium channels make a major contribution to SIN-1-evoked relaxation of rat isolated mesenteric artery. Br J Pharmacol 119:1557–1562.

    PubMed  CAS  Google Scholar 

  • Schmidt K, Desch W, Klatt P, Kukovetz WR, Mayer B (1997). Release of nitric oxide from donors with known half-life:a mathematical model for calculating nitric oxide concentrations in aerobic solutions. Naunyn Schmiedebergs Arch Pharmacol 355:457–62.

    Article  PubMed  CAS  Google Scholar 

  • Servent D, Delaforge M, Ducrocco C, Mansuy D, Lenfant M (1989). Nitric oxide formation during microsomal hepatic denitration of glyceryl trinitrate:involvement of cytochrome P-450. Biochem Biophys Res Commun 163:1210–6.

    Article  PubMed  CAS  Google Scholar 

  • Stamler JS (1995). S-nitrosothiols and the bioregulatory actions of nitrogen oxides through reactions with thiol groups. Curr Top Microbiol Immunol 196:19–36.

    PubMed  CAS  Google Scholar 

  • Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, Singel DJ, Loscalzo J (1992). S-nitrosylation of proteins with nitric oxide:synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A 89:444–8.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Kojima H, Urano Y, Kikuchi K, Hirata Y, Negano T (2002). Orthogonality of calcium concentration and ability of 4,5 diaminofluoroscein to detect NO. J Biol Chem 277:47–49.

    Article  PubMed  CAS  Google Scholar 

  • Sydow K, Daiber A, Obelze M, Chen Z, August M, Wendt M, Ullrich V, Mulsch A, Schulz E, Keaney JF, Stamler JS, Munzel T (2004). Central role of mitochondrial aldehyde dehydrogenase and reactive oxygen species in nitroglycerin tolerance and cross-tolerance. J Clin Invest 113:482–9.

    PubMed  CAS  Google Scholar 

  • Taylor EL, Rossi AG, Shaw CA, Dal Rio FP, Haslett C, Megson IL (2004). Human neutrophil apoptosis induced by GEA 3162 is mediated via peroxynitrite generation. Br J Pharmacol 143:179–185.

    Article  PubMed  CAS  Google Scholar 

  • Thomas DD, Miranda KM, Colton CA, Citrin D, Espey MG, Wink DA (2003). Heme proteins and nitric oxide (NO):the neglected, eloquent chemistry in NO redox signaling and regulation. Antiox Redox Signal 5:307–317.

    Article  CAS  Google Scholar 

  • Tsikas D (2007). Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction:appraisal of the Griess reaction in the L-arginine/nitric oxide area of research. J Chromatogr B Analyt Technol Biomed Life Sci. 851:51–70.

    Article  PubMed  CAS  Google Scholar 

  • Turnbull CM, Rossi AG, Megson IL (2006). Therapeutic effects of nitric oxide-aspirin hybrid drugs. Expert Opin Ther Targets 10:911–922.

    Article  PubMed  CAS  Google Scholar 

  • Waldman SA, Murad F (1988). Biochemical mechanisms underlying vascular smooth muscle relaxation:the guanylate cyclase-cyclic GMP system. J Cardiovasc Pharmacol 12 (Suppl 5):S115–8.

    Article  PubMed  CAS  Google Scholar 

  • Weber AA, Strobach H, Schror K (1993). Direct inhibition of platelet function by organic nitrates via nitric oixde formation. Eur J Pharmacol 247:29–37.

    Article  PubMed  CAS  Google Scholar 

  • Wenzel P, Hink U, Oelze M, Seeling A, Isse T, Bruns K, Steinhoff L, Brandt M, Kleschyov AL, Schulz E, Lange K, Weiner H, Lehmann J, Lackner KJ, Kawamoto T, Munzel T, Daiber A (2007). Number of nitrate groups determines reactivity and potency of organic nitrates:a proof of concept study in ALDH-2-/- mice. Br J Pharmacol 150:526–33.

    Article  PubMed  CAS  Google Scholar 

  • Wheatley PA, Butler AR, Crane MS, Fox S, Rossi AG, Megson IL, Morris RE (2006). NO-releasing zeolites and their anti-thrombotic properties. J Am Chem Soc 128:502–509.

    Article  PubMed  CAS  Google Scholar 

  • Williams DLH (1985). S-Nitrosation and the reaction of S-nitrose compounds. Chem Soc Rev 14:171–196

    Article  CAS  Google Scholar 

  • Wink DA, Nims RW, Darbyshire JF, Christodoulou D, Hanbauer I, Cox GW, Laval J, Cook JA (1994). Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction. Chem Res Toxicol 7:519–25.

    Article  CAS  Google Scholar 

  • Zai A, Rudd MA, Scribner AW, Loscalzo J (1999). Cell-surface protein disulfide isomerase catalyzes transnitrosation and regulates intracellular transfer of nitric oxide. J Clin Invest 103:393–9.

    Article  PubMed  CAS  Google Scholar 

  • Zhang X (2004). Real time and in vivo monitoring of nitric oxide by electrochemical sensors -from dream to reality. Frontiers in Bioscience 9:3434–3446.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian L. Megson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Megson, I.L., Miller, M.R. (2009). NO and sGC-Stimulating NO Donors. In: Schmidt, H.H.H.W., Hofmann, F., Stasch, JP. (eds) cGMP: Generators, Effectors and Therapeutic Implications. Handbook of Experimental Pharmacology, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68964-5_12

Download citation

Publish with us

Policies and ethics