Skip to main content

A Short History of cGMP, Guanylyl Cyclases, and cGMP-Dependent Protein Kinases

  • Chapter
cGMP: Generators, Effectors and Therapeutic Implications

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 191))

Abstract

Here, we review the early studies on cGMP, guanylyl cyclases, and cGMP-dependent protein kinases to facilitate understanding of development of this exciting but complex field of research encompassing pharmacology, biochemistry, physiology, and molecular biology of these important regulatory molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold WP, Mittal CK, Katsuki S, Murad F (1977) Nitric oxIDe activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA 74:3203–3207

    PubMed  CAS  Google Scholar 

  • Ashman DF, Lipton R, Melicow MM, Price TD (1963) Isolation of adenosine 3′,5′-mono-phosphate and guanosine 3′, 5′-monophosphate from rat urine. Biochem Biophys Res Commun 11:330–334

    PubMed  CAS  Google Scholar 

  • Beavo JA, Hardman JG, Sutherland EW (1970) Hydrolysis of cyclic guanosine and adenosine 3′, 5′-monophosphates by rat and bovine tissues. J Biol Chem 245:5649–5655

    PubMed  CAS  Google Scholar 

  • Beuve A (1999) Conversion of a guanylyl cyclase to an adenylyl cyclase. Methods 19:545–550

    PubMed  CAS  Google Scholar 

  • Bohme E, Munske K, Schultz G (1969) [Formation of cyclic guanosine-3′,5′-monophosphate in various rat tissues]. Naunyn Schmiedebergs Arch Pharmakol 264:220–221

    PubMed  CAS  Google Scholar 

  • Bredt DS, Snyder SH (1992) Nitric oxIDe, a novel neuronal messenger. Neuron 8:3–11

    PubMed  CAS  Google Scholar 

  • Broadus AE, Hardman JG, Kaminsky NI, Ball JH, Sutherland EW, LIDdle GW (1971) Extracellular cyclic nucleotIDes. Ann N Y Acad Sci 185:50–66

    Article  PubMed  CAS  Google Scholar 

  • Brooker G, Thomas LJ, Jr, Appleman MM (1968) The assay of adenosine 3′, 5′-cyclic monophosphate and guanosine 3′, 5′-cyclic monophosphate in biological materials by enzymatic radioisotopic displacement. Biochemistry 7:4177–4181

    PubMed  CAS  Google Scholar 

  • Cheung WY (1971) Cyclic 3′, 5′-nucleotIDe phosphodiesterase. Effect of divalent cations. Biochim Biophys Acta 242:395–409

    PubMed  CAS  Google Scholar 

  • Chinkers M, Garbers DL, Chang MS, Lowe DG, Chin HM, Goeddel DV, Schulz S (1989) A membrane form of guanylate cyclase is an atrial natriuretic peptIDe receptor. Nature 338:78–83

    PubMed  CAS  Google Scholar 

  • Currie MG, Fok KF, Kato J, Moore RJ, Hamra FK, Duffin KL, Smith CE (1992) Guanylin: an endogenous activator of intestinal guanylate cyclase. Proc Natl Acad Sci USA 89:947–951

    PubMed  CAS  Google Scholar 

  • de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H (1981) A rapID and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28:89–94

    PubMed  Google Scholar 

  • Deguchi T, Yoshioka M (1982) L-Arginine IDentified as an endogenous activator for soluble guanylate cyclase from neuroblastoma cells. J Biol Chem 257:10147–10151

    PubMed  CAS  Google Scholar 

  • de Jonge HR (1981) Cyclic GMP-dependent protein kinase in intestinal brushborders. Adv Cyclic NucleotIDe Res 14:315–333

    PubMed  Google Scholar 

  • Drummond GI, Perrott-Yee S (1961) Enzymatic hydrolysis of adenosine 3′,5′-phosphoric acID. J Biol Chem 236:1126–1129

    PubMed  CAS  Google Scholar 

  • Duda T, Sharma RK (2008) ONE-GC membrane guanylate cyclase, a trimodal odorant signal transducer. Biochem Biophys Res Commun 367:440–445

    PubMed  CAS  Google Scholar 

  • Fesenko EE, Kolesnikov SS, Lyubarsky AL (1985) Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 313:310–313

    PubMed  CAS  Google Scholar 

  • Forstermann U, SchmIDt HH, Pollock JS, Sheng H, Mitchell JA, Warner TD, Nakane M, Murad F (1991) Isoforms of nitric oxIDe synthase. Characterization and purification from different cell types. Biochem Pharmacol 42:1849–1857

    PubMed  CAS  Google Scholar 

  • Fuller F, Porter JG, Arfsten AE, Miller J, Schilling JW, Scarborough RM, Lewicki JA, Schenk DB (1988) Atrial natriuretic peptIDe clearance receptor. Complete sequence and functional expression of cDNA clones. J Biol Chem 263:9395–9401

    PubMed  CAS  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    PubMed  CAS  Google Scholar 

  • Furuya M, Takehisa M, Minamitake Y, Kitajima Y, Hayashi Y, Ohnuma N, Ishihara T, Minamino N, Kangawa K, Matsuo H (1990) Novel natriuretic peptIDe, CNP, potently stimulates cyclic GMP production in rat cultured vascular smooth muscle cells. Biochem Biophys Res Commun 170:201–208

    PubMed  CAS  Google Scholar 

  • Gamm DM, Francis SH, Angelotti TP, Corbin JD, Uhler MD (1995) The type II isoform of cGMP-dependent protein kinase is dimeric and possesses regulatory and catalytic properties distinct from the type I isoforms. J Biol Chem 270:27380–27388

    PubMed  CAS  Google Scholar 

  • George WJ, Polson JB, O'Toole AG, Goldberg ND (1970) Elevation of guanosine 3′,5′-cyclic phosphate in rat heart after perfusion with acetylcholine. Proc Natl Acad Sci U S A 66:398–403

    PubMed  CAS  Google Scholar 

  • Gerzer R, Bohme E, Hofmann F, Schultz G (1981) Soluble guanylate cyclase purified from bovine lung contains heme and copper. FEBS Lett 132:71–74

    PubMed  CAS  Google Scholar 

  • Gill GN, Holdy KE, Walton GM, Kanstein CB (1976) Purification and characterization of 3′:5′-cyclic GMP-dependent protein kinase. Proc Natl Acad Sci USA 73:3918–3922

    PubMed  CAS  Google Scholar 

  • Glass DB, Krebs EG (1979) Comparison of the substrate specificity of adenosine 3′:5′-monophosphate- and guanosine 3′:5′-monophosphate-dependent protein kinases. Kinetic studies using synthetic peptIDes corresponding to phosphorylation sites in histone H2B. J Biol Chem 254:9728–9738

    PubMed  CAS  Google Scholar 

  • GorIDis C, Morgan IG (1973) Guanyl cyclase in rat brain subcellular fractions. FEBS Lett 34: 71–73

    PubMed  CAS  Google Scholar 

  • Hamet P, Tremblay J, Pang SC, Garcia R, Thibault G, Gutkowska J, Cantin M, Genest J (1984) Effect of native and synthetic atrial natriuretic factor on cyclic. GMP Biochem Biophys Res Commun 123:515–527

    CAS  Google Scholar 

  • Hamra FK, Forte LR, Eber SL, PIDhorodeckyj NV, Krause WJ, Freeman RH, Chin DT, Tompkins JA, Fok KF, Smith CE, et al (1993) Uroguanylin: structure and activity of a second endogenous peptIDe that stimulates intestinal guanylate cyclase. Proc Natl Acad Sci U S A 90:10464–10468

    PubMed  CAS  Google Scholar 

  • Hansbrough JR, Garbers DL (1981) Speract. Purification and characterization of a peptIDe associated with eggs that activates spermatozoa. J Biol Chem 256:1447–1452

    PubMed  CAS  Google Scholar 

  • Hardman JG, Sutherland EW (1969) Guanyl cyclase, an enzyme catalyzing the formation of guanosine 3′, 5′-monophosphate from guanosine triphosphate. J Biol Chem 244:6363–6370

    PubMed  CAS  Google Scholar 

  • Hardman JG, Davis JW, Sutherland EW (1966) Measurement of guanosine 3′,5′-monophosphate and other cyclic nucleotIDes. Variations in urinary excretion with hormonal state of the rat. J Biol Chem 241:4812–4815

    PubMed  CAS  Google Scholar 

  • Harteneck C, Wedel B, Koesling D, Malkewitz J, Bohme E, Schultz G (1991) Molecular cloning and expression of a new alpha-subunit of soluble guanylyl cyclase. Interchangeability of the alpha-subunits of the enzyme. FEBS Lett 292:217–222

    PubMed  CAS  Google Scholar 

  • Hashimoto E, Takio K, Krebs EG (1982) Amino acID sequence at the ATP-binding site of cGMP-dependent protein kinase. J Biol Chem 257:727–733

    PubMed  CAS  Google Scholar 

  • Hofmann F, Sold G (1972) A protein kinase activity from rat cerebellum stimulated by guanosine-3′:5′-monophosphate. Biochem Biophys Res Commun 49:1100–1107

    PubMed  CAS  Google Scholar 

  • Hughes JM, Murad F, Chang B, Guerrant RL (1978) Role of cyclic GMP in the action of heat-stable enterotoxin of Escherichia coli. Nature 271:755–756

    PubMed  CAS  Google Scholar 

  • Ignarro LJ (1989) Endothelium-derived nitric oxIDe: actions and properties. FASEB J 3:31–36

    PubMed  CAS  Google Scholar 

  • Ignarro LJ, Degnan JN, Baricos WH, Kadowitz PJ, Wolin MS (1982a) Activation of purified guanylate cyclase by nitric oxIDe requires heme. Comparison of heme-deficient, heme-reconstituted and heme-containing forms of soluble enzyme from bovine lung. Biochim Biophys Acta 718:49–59

    CAS  Google Scholar 

  • Ignarro LJ, Wood KS, Wolin MS (1982b) Activation of purified soluble guanylate cyclase by protoporphyrin IX. Proc Natl Acad Sci USA 79:2870–2873

    CAS  Google Scholar 

  • Jarchau T, Hausler C, Markert T, Pohler D, Vanderkerckhove J, De Jonge HR, Lohmann SM, Walter U (1994) Cloning, expression, and in situ localization of rat intestinal cGMP-dependent protein kinase II. Proc Natl Acad Sci USA 91:9426–9430

    PubMed  CAS  Google Scholar 

  • Kakiuchi S, Yamazaki R, Teshima Y (1971) Cyclic 3′,5′-nucleotIDe phosphodiesterase, IV. Two enzymes with different properties from brain. Biochem Biophys Res Commun 42:968–974

    PubMed  CAS  Google Scholar 

  • Kalderon D, Rubin GM (1989) cGMP-dependent protein kinase genes in Drosophila. J Biol Chem 264:10738–10748

    PubMed  CAS  Google Scholar 

  • Kaminsky NI, Broadus AE, Hardman JG, Jones DJ, Jr, Ball JH, Sutherland EW, LIDdle GW (1970) Effects of parathyroID hormone on plasma and urinary adenosine 3′, 5′-monophosphate in man. J Clin Invest 49:2387–2395

    PubMed  CAS  Google Scholar 

  • Kamisaki Y, Saheki S, Nakane M, Palmieri JA, Kuno T, Chang BY, Waldman SA, Murad F (1986) Soluble guanylate cyclase from rat lung exists as a heterodimer. J Biol Chem 261:7236–7241

    PubMed  CAS  Google Scholar 

  • Kasahara M, Unno T, Yashiro K, Ohmori M (2001) CyaG, a novel cyanobacterial adenylyl cyclase and a possible ancestor of mammalian guanylyl cyclases. J Biol Chem 276:10564–10569

    PubMed  CAS  Google Scholar 

  • Katsuki S, Arnold W, Mittal C, Murad F (1977) Stimulation of guanylate cyclase by sodium ni-troprussIDe, nitroglycerin and nitric oxIDe in various tissue preparations and comparison to the effects of sodium azIDe and hydroxylamine. J Cyclic NucleotIDe Res 3:23–35

    PubMed  CAS  Google Scholar 

  • Khromov AS, Wang H, Choudhury N, McDuffie M, Herring BP, Nakamoto R, Owens GK, Somlyo AP, Somlyo AV (2006) Smooth muscle of telokin-deficient mice exhibits increased sensitivity to Ca2+ and decreased cGMP-induced relaxation. Proc Natl Acad Sci USA 103:2440–2445

    PubMed  CAS  Google Scholar 

  • Kimura H, Murad F (1974) EvIDence for two different forms of guanylate cyclase in rat heart. J Biol Chem 249:6910–6916

    PubMed  CAS  Google Scholar 

  • Kimura H, Murad F (1975a) Increased particulate and decreased soluble guanylate cyclase activity in regenerating liver, fetal liver, and hepatoma. Proc Natl Acad Sci USA 72:1965–1969

    CAS  Google Scholar 

  • Kimura H, Murad F (1975b) Two forms of guanylate cyclase in mammalian tissues and possible mechanisms for their regulation. Metabolism 24:439–445

    CAS  Google Scholar 

  • Kimura H, Thomas E, Murad F (1974) Effects of decapitation, ether and pentobarbital on guano-sine 3′, 5′-phosphate and adenosine 3′, 5′-phosphate levels in rat tissues. Biochim Biophys Acta 343:519–528

    PubMed  CAS  Google Scholar 

  • Kimura H, Mittal CK, Murad F (1975a) Activation of guanylate cyclase from rat liver and other tissues by sodium azIDe. J Biol Chem 250:8016–8022

    CAS  Google Scholar 

  • Kimura H, Mittal CK, Murad F (1975b) Increases in cyclic GMP levels in brain and liver with sodium azIDe an activator of guanylate cyclase. Nature 257:700–702

    CAS  Google Scholar 

  • Koch KW, Stryer L (1988) Highly cooperative feedback control of retinal rod guanylate cyclase by calcium ions. Nature 334:64–66

    PubMed  CAS  Google Scholar 

  • Koesling D, Herz J, Gausepohl H, Niroomand F, Hinsch KD, Mulsch A, Bohme E, Schultz G, Frank R (1988) The primary structure of the 70kDa subunit of bovine soluble guanylate cyclase. FEBS Lett 239:29–34

    PubMed  CAS  Google Scholar 

  • Koesling D, Harteneck C, Humbert P, Bosserhoff A, Frank R, Schultz G, Bohme E (1990) The primary structure of the larger subunit of soluble guanylyl cyclase from bovine lung. Homology between the two subunits of the enzyme. FEBS Lett 266:128–132

    PubMed  CAS  Google Scholar 

  • Koller KJ, Lowe DG, Bennett GL, Minamino N, Kangawa K, Matsuo H, Goeddel DV (1991) Selective activation of the B natriuretic peptIDe receptor by C-type natriuretic peptIDe (CNP). Science 252:120–123

    PubMed  CAS  Google Scholar 

  • Kuno T, Andresen JW, Kamisaki Y, Waldman SA, Chang LY, Saheki S, Leitman DC, Nakane M, Murad F (1986) Co-purification of an atrial natriuretic factor receptor and particulate guanylate cyclase from rat lung. J Biol Chem 261:5817–5823

    PubMed  CAS  Google Scholar 

  • Kuo JF, Greengard P (1969) Cyclic nucleotIDe-dependent protein kinases. IV. WIDespread occurrence of adenosine 3′, 5′-monophosphate-dependent protein kinase in various tissues and phyla of the animal kingdom. Proc Natl Acad Sci USA 64:1349–1355

    PubMed  CAS  Google Scholar 

  • Kuo JF, Greengard P (1970) Cyclic nucleotIDe-dependent protein kinases. VI. Isolation and partial purification of a protein kinase activated by guanosine 3′, 5′-monophosphate. J Biol Chem 245:2493–2498

    PubMed  CAS  Google Scholar 

  • Kuo JF, Greengard P (1974) Purification and characterization of cyclic GMP-dependent protein kinases. Methods Enzymol 38:329–350

    PubMed  CAS  Google Scholar 

  • Kuriyama Y, Koyama J, Egami F (1964) Digestion of chemically synthesized polyguanylic acIDs by ribonuclease T1 and spleen phosphodiesterase. Seikagaku 36:135–139

    CAS  Google Scholar 

  • Leinders-Zufall T, Cockerham RE, Michalakis S, Biel M, Garbers DL, Reed RR, Zufall F, Munger SD (2007) Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc Natl Acad Sci USA 104:14507–14512

    Google Scholar 

  • Leitman DC, Andresen JW, Kuno T, Kamisaki Y, Chang JK, Murad F (1986a) IDentification of multiple binding sites for atrial natriuretic factor by affinity cross-linking in cultured endothelial cells. J Biol Chem 261:11650–11655

    CAS  Google Scholar 

  • Leitman DC, Andresen JW, Kuno T, Kamisaki Y, Chang JK, Murad F (1986b) IDentification of two binding sites for atrial natriuretic factor in endothelial cells: evIDence for a receptor subtype coupled to guanylate cyclase. Trans Assoc Am Physicians 99:103–113

    CAS  Google Scholar 

  • Lincoln TM, Corbin JD (1977) Adenosine 3′:5′-cyclic monophosphate- and guanosine 3′:5′-cyclic monophosphate-dependent protein kinases: possible homologous proteins. Proc Natl Acad Sci USA 74:3239–3243

    PubMed  CAS  Google Scholar 

  • Lincoln TM, Dills WL, Jr, Corbin JD (1977) Purification and subunit composition of guanosine 3′:5′-monophosphate-dependent protein kinase from bovine lung. J Biol Chem 252:4269–4275

    PubMed  CAS  Google Scholar 

  • Lowe DG, Chang MS, Hellmiss R, Chen E, Singh S, Garbers DL, Goeddel DV (1989) Human atrial natriuretic peptIDe receptor defines a new paradigm for second messenger signal transduction. EMBO J 8:1377–1384

    PubMed  CAS  Google Scholar 

  • Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, Chepenik KP, Waldman SA (2000) Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 52:375–414

    PubMed  CAS  Google Scholar 

  • Mann EA, Jump ML, Wu J, Yee E, Giannella RA (1997) Mice lacking the guanylyl cyclase C receptor are resistant to STa-induced intestinal secretion. Biochem Biophys Res Commun 239:463–466

    PubMed  CAS  Google Scholar 

  • Mingone CJ, Gupte SA, Chow JL, Ahmad M, Abraham NG, Wolin MS (2006) Protoporphyrin IX generation from delta-aminolevulinic acID elicits pulmonary artery relaxation and soluble guanylate cyclase activation. Am J Physiol Lung Cell Mol Physiol 291:L337–L344

    PubMed  CAS  Google Scholar 

  • Mittal CK, Murad F (1977) Formation of adenosine 3′:5′-monophosphate by preparations of guanylate cyclase from rat liver and other tissues. J Biol Chem 252:3136–3140

    PubMed  CAS  Google Scholar 

  • Mittal CK, Braughler JM, Ichihara K, Murad F (1979) Synthesis of adenosine 3′, 5′-monophosphate by guanylate cyclase, a new pathway for its formation. Biochim Biophys Acta 585:333–342

    PubMed  CAS  Google Scholar 

  • Moncada S (1990) The first Robert Furchgott lecture: from endothelium-dependent relaxation to the l-arginine:NO pathway. Blood Vessels 27:208–217

    PubMed  CAS  Google Scholar 

  • Moncada S, Higgs EA (1991) Endogenous nitric oxIDe: physiology, pathology and clinical relevance. Eur J Clin Invest 21:361–374

    PubMed  CAS  Google Scholar 

  • Murad F (1986) Cyclic guanosine monophosphate as a mediator of vasodilation. J Clin Invest 78:1–5

    PubMed  CAS  Google Scholar 

  • Murad F (1998) Nitric oxIDe signaling: would you believe that a simple free radical could be a second messenger, autacoID, paracrine substance, neurotransmitter, and hormone?. Recent Prog Horm Res 53:43–59; discussion 59–60

    PubMed  CAS  Google Scholar 

  • Murad F (1999) Discovery of some of the biological effects of nitric oxIDe and its role in cell signaling. Biosci Rep 19:133–154

    PubMed  CAS  Google Scholar 

  • Murad F (2006) Shattuck lecture. Nitric oxide and cyclic GMP in cell signaling and drug development. N Engl J Med 355:2003–2011

    PubMed  CAS  Google Scholar 

  • Murad F, Gilman AG (1971) Adenosine 3′,5′-monophosphate and guanosine 3′, 5′-monophosphate: a simultaneous protein binding assay. Biochim Biophys Acta 252:397–400

    PubMed  CAS  Google Scholar 

  • Murad F, Manganiello V, Vaughan M (1970) Effects of guanosine 3′, 5′-monophosphate on glycerol production and accumulation of adenosine 3′, 5′-monophosphate by fat cells. J Biol Chem 245:3352–3360

    PubMed  CAS  Google Scholar 

  • Murad F, Manganiello V, Vaughan M (1971) A simple, sensitive protein-binding assay for guanosine 3′:5′-monophosphate. Proc Natl Acad Sci USA 68:736–739

    PubMed  CAS  Google Scholar 

  • Murad F, Mittal CK, Arnold WP, Katsuki S, Kimura H (1978) Guanylate cyclase: activation by azIDe, nitro compounds, nitric oxIDe, and hydroxyl radical and inhibition by hemoglobin and myoglobin. Adv Cyclic NucleotIDe Res 9:145–158

    PubMed  CAS  Google Scholar 

  • Nair KG (1966) Purification and properties of 3′, 5′–cyclic nucleotIDe phosphodiesterase from dog heart. Biochemistry 5:150–157

    PubMed  CAS  Google Scholar 

  • Nakane M, Saheki S, Kuno T, Ishii K, Murad F (1988) Molecular cloning of a cDNA coding for 70 kilodalton subunit of soluble guanylate cyclase from rat lung. Biochem Biophys Res Commun 157:1139–1147

    PubMed  CAS  Google Scholar 

  • Nakane M, Arai K, Saheki S, Kuno T, Buechler W, Murad F (1990) Molecular cloning and expression of cDNAs coding for soluble guanylate cyclase from rat lung. J Biol Chem 265: 16841–16845

    PubMed  CAS  Google Scholar 

  • Nakazawa K, Sano M (1975) Partial purification and properties of guanosine 3′:5′–monophosphate-dependent protein kinase from pig lung. J Biol Chem 250:7415–7419

    PubMed  CAS  Google Scholar 

  • Pannbacker RG (1973) Control of guanylate cyclase activity in the rod outer segment. Science 182:1138–1140

    PubMed  CAS  Google Scholar 

  • Pannbacker RG, Fleischman DE, Reed DW (1972) Cyclic nucleotIDe phosphodiesterase: high activity in a mammalian photoreceptor. Science 175:757–758

    PubMed  CAS  Google Scholar 

  • Paul AK, Marala RB, Jaiswal RK, Sharma RK (1987) Coexistence of guanylate cyclase and atrial natriuretic factor receptor in a 180-kD protein. Science 235:1224–1226

    PubMed  CAS  Google Scholar 

  • Pepe IM, Panfoli I, Cugnoli C (1986) Guanylate cyclase in rod outer segments of the toad retina. Effect of light and Ca2+. FEBS Lett 203:73–76

    PubMed  CAS  Google Scholar 

  • Price TD, Ashman DF, Melicow MM (1967) Organophosphates of urine, including adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate. Biochim Biophys Acta 138: 452–465

    PubMed  CAS  Google Scholar 

  • Pugh EN, Jr, Duda T, Sitaramayya A, Sharma RK (1997) Photoreceptor guanylate cyclases: a review. Biosci Rep 17:429–473

    PubMed  CAS  Google Scholar 

  • Rall TW, Sutherland EW (1958) Formation of a cyclic adenine ribonucleotIDe by tissue particles. J Biol Chem 232:1065–1076

    PubMed  CAS  Google Scholar 

  • Rapoport RM, Murad F (1983) Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ Res 52:352–357

    PubMed  CAS  Google Scholar 

  • Rapoport RM, Draznin MB, Murad F (1983) Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation. Nature 306:174–176

    PubMed  CAS  Google Scholar 

  • Sager G (2004) Cyclic GMP transporters. Neurochem Int 45:865–873

    PubMed  CAS  Google Scholar 

  • Schindler U, Strobel H, Schonafinger K, Linz W, Lohn M, Martorana PA, Rutten H, Schindler PW, Busch AE, Sohn M, Topfer A, Pistorius A, Jannek C, Mulsch A (2006) Biochemistry and pharmacology of novel anthranilic acID derivatives activating heme-oxIDized soluble guanylyl cyclase. Mol Pharmacol 69:1260–1268

    PubMed  CAS  Google Scholar 

  • Schultz G, Bohme E, Munske K (1969) Guanyl cyclase. Determination of enzyme activity. Life Sci 8:1323–1332

    PubMed  CAS  Google Scholar 

  • Schultz G, Hardman JG, Schultz K, Baird CE, Sutherland EW (1973) The importance of calcium ions for the regulation of guanosine 3′:5′-cyclic monophosphage levels. Proc Natl Acad Sci USA 70:3889–3893

    PubMed  CAS  Google Scholar 

  • Schulz S, Chinkers M, Garbers DL (1989) The guanylate cyclase/receptor family of proteins. FASEB J 3:2026–2035

    PubMed  CAS  Google Scholar 

  • Schulz S, Green CK, Yuen PS, Garbers DL (1990) Guanylyl cyclase is a heat-stable enterotoxin receptor. Cell 63:941–948

    PubMed  CAS  Google Scholar 

  • Sharina IG, Krumenacker JS, Martin E, Murad F (2000) Genomic organization of alpha1 and beta1 subunits of the mammalian soluble guanylyl cyclase genes. Proc Natl Acad Sci USA 97:10878–10883

    PubMed  CAS  Google Scholar 

  • Sharina IG, Martin E, Thomas A, Uray KL, Murad F (2003) CCAAT-binding factor regulates expression of the beta1 subunit of soluble guanylyl cyclase gene in the BE2 human neuroblastoma cell line. Proc Natl Acad Sci USA 100:11523–11528

    PubMed  CAS  Google Scholar 

  • Singh S, Lowe DG, Thorpe DS, Rodriguez H, Kuang WJ, Dangott LJ, Chinkers M, Goeddel DV, Garbers DL (1988) Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinases. Nature 334:708–712

    PubMed  CAS  Google Scholar 

  • Smith M, Drummond GI, Khorana HG (1961) Cyclic phosphates. IV. RibonucleosIDe 3′, 5′-cyclic phosphates. A general method of synthesis and some properties. J Am Chem Soc 83:698–706

    CAS  Google Scholar 

  • Sold G, Hofmann F (1974) EvIDence for a guanosine-3′:5′-monophosphate-binding protein from rat cerebellum. Eur J Biochem 44:143–149

    PubMed  CAS  Google Scholar 

  • Song DL, Kohse KP, Murad F (1988) Brain natriuretic factor. Augmentation of cellular cyclic GMP, activation of particulate guanylate cyclase and receptor binding. FEBS Lett 232:125–129

    PubMed  CAS  Google Scholar 

  • Stasch JP, SchmIDt P, Alonso-Alija C, Apeler H, Dembowsky K, Haerter M, Heil M, Minuth T, Perzborn E, Pleiss U, Schramm M, Schroeder W, Schroder H, Stahl E, Steinke W, Wunder F (2002) NO- and haem-independent activation of soluble guanylyl cyclase: molecular basis and cardiovascular implications of a new pharmacological principle. Br J Pharmacol 136:773–783

    PubMed  CAS  Google Scholar 

  • Stuehr DJ, Griffith OW (1992) Mammalian nitric oxIDe synthases. Adv Enzymol Relat Areas Mol Biol 65:287–346

    PubMed  CAS  Google Scholar 

  • Sudoh T, Kangawa K, Minamino N, Matsuo H (1988) A new natriuretic peptIDe in porcine brain. Nature 332:78–81

    PubMed  CAS  Google Scholar 

  • Sunahara RK, Beuve A, Tesmer JJ, Sprang SR, Garbers DL, Gilman AG (1998) Exchange of substrate and inhibitor specificities between adenylyl and guanylyl cyclases. J Biol Chem 273:16332–16338

    PubMed  CAS  Google Scholar 

  • Sutherland EW, Rall TW (1958) Fractionation and characterization of a cyclic adenine ribonucleotIDe formed by tissue particles. J Biol Chem 232:1077–1091

    PubMed  CAS  Google Scholar 

  • Takio K, Smith SB, Walsh KA, Krebs EG, Titani K (1983) Amino acID sequence around a “hinge” region and its “autophosphorylation” site in bovine lung cGMP-dependent protein kinase. J Biol Chem 258:5531–5536

    PubMed  CAS  Google Scholar 

  • Takio K, Wade RD, Smith SB, Krebs EG, Walsh KA, Titani K (1984) Guanosine cyclic 3′, 5′-phosphate dependent protein kinase, a chimeric protein homologous with two separate protein families. Biochemistry 23:4207–4218

    PubMed  CAS  Google Scholar 

  • Thompson WJ, Appleman MM (1971) Characterization of cyclic nucleotIDe phosphodiesterases of rat tissues. J Biol Chem 246:3145–3150

    PubMed  CAS  Google Scholar 

  • Thorpe DS, Garbers DL (1989) The membrane form of guanylate cyclase. Homology with a sub-unit of the cytoplasmic form of the enzyme. J Biol Chem 264:6545–6549

    PubMed  CAS  Google Scholar 

  • Uhler MD (1993) Cloning and expression of a novel cyclic GMP-dependent protein kinase from mouse brain. J Biol Chem 268:13586–13591

    PubMed  CAS  Google Scholar 

  • Waldman SA, Rapoport RM, Murad F (1984) Atrial natriuretic factor selectively activates particulate guanylate cyclase and elevates cyclic GMP in rat tissues. J Biol Chem 259:14332–14334

    PubMed  CAS  Google Scholar 

  • Wernet W, Flockerzi V, Hofmann F (1989) The cDNA of the two isoforms of bovine cGMP-dependent protein kinase. FEBS Lett 251:191–196

    PubMed  CAS  Google Scholar 

  • White AA, Aurbach GD (1969) Detection of guanyl cyclase in mammalian tissues. Biochim Bio-phys Acta 191:686–697

    CAS  Google Scholar 

  • Winquist RJ, Faison EP, Waldman SA, Schwartz K, Murad F, Rapoport RM (1984) Atrial natriuretic factor elicits an endothelium-independent relaxation and activates particulate guanylate cyclase in vascular smooth muscle. Proc Natl Acad Sci USA 81:7661–7664

    PubMed  CAS  Google Scholar 

  • Wolfe L, Francis SH, Landiss LR, Corbin JD (1987) Interconvertible cGMP-free and cGMP-bound forms of cGMP-dependent protein kinase in mammalian tissues. J Biol Chem 262:16906– 16913

    PubMed  CAS  Google Scholar 

  • Wolfe L, Francis SH, Corbin JD (1989) Properties of a cGMP-dependent monomeric protein kinase from bovine aorta. J Biol Chem 264:4157–4162

    PubMed  CAS  Google Scholar 

  • Yetik-Anacak G, Catravas JD (2006) Nitric oxIDe and the endothelium: history and impact on cardiovascular disease. Vascul Pharmacol 45:268–276

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferid Murad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Kots, A.Y., Martin, E., Sharina, I.G., Murad, F. (2009). A Short History of cGMP, Guanylyl Cyclases, and cGMP-Dependent Protein Kinases. In: Schmidt, H.H.H.W., Hofmann, F., Stasch, JP. (eds) cGMP: Generators, Effectors and Therapeutic Implications. Handbook of Experimental Pharmacology, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68964-5_1

Download citation

Publish with us

Policies and ethics