Skip to main content

The Use of Sectional Imaging with CT and MRI for Image-Guided Therapy

  • Chapter
  • First Online:
Gynecologic Radiation Therapy

Abstract

Sectional imaging with computed tomography (CT) or magnetic resonance imaging (MRI) is widely applied in modern gynecological radiotherapy. While external beam radiotherapy (EBRT) relies mainly on CT, image-guided brachytherapy (IGBT) preferably may be based on MRI. Both imaging modalities have advantages and weaknesses. The diagnostic value of sectional imaging can be improved by the use of the specific protocols for image acquisition. Image guidance enables assessment of tumor regression and interfraction organ motion with subsequent adaptation of radiotherapy treatment plans. Margin size around the tumor can be reduced and a higher tumor doses applied. This leads to an increase of locoregional control and a decrease of radiotherapy-related morbidity with improved quality of life. The potential benefits of using repetitive imaging for IGRT are the subject of ongoing and future research in gynecological radiation oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tanyi JA, Fuss MH. Volumetric image-guidance: does routine usage prompt adaptive re-planning? An institutional review. Acta Oncol. 2008;47:1444–53.

    Article  PubMed  CAS  Google Scholar 

  2. Verellen D, De RM, Tournel K, et al. An overview of volumetric imaging technologies and their quality assurance for IGRT. Acta Oncol. 2008;47:1271–8.

    Article  PubMed  CAS  Google Scholar 

  3. Dimopoulos J, Schirl G, Baldinger A, Helbich T, Pötter R. MRI Assessment of Cervical Cancer for Adaptive Radiotherapy. Strahlenther Onkol. 2009;185:282–7.

    Google Scholar 

  4. Dimopoulos JC, Schard G, Berger D, et al. Systematic evaluation of MRI findings in different stages of treatment of cervical cancer: potential of MRI on delineation of target, pathoanatomic structures, and organs at risk. Int J Radiat Oncol Biol Phys. 2006;64:1380–8.

    Article  PubMed  Google Scholar 

  5. van de Bunt L, van der Heide UA, Ketelaars M, de Kort GA, Jurgenliemk-Schulz IM. Conventional, conformal, and intensity-modulated radiation therapy treatment planning of external beam radiotherapy for cervical cancer: the impact of tumor regression. Int J Radiat Oncol Biol Phys. 2006;64:189–96.

    Article  PubMed  Google Scholar 

  6. Chen Z, Ma CM, Paskalev K, et al. Investigation of MR image distortion for radiotherapy treatment planning of prostate cancer. Phys Med Biol. 2006;51:1393–403.

    Article  PubMed  CAS  Google Scholar 

  7. Khoo VS, Joon DL. New developments in MRI for target volume delineation in radiotherapy. Br J Radiol. 2006;79 Spec No 1:S2–15.

    Google Scholar 

  8. Kessler ML. Image registration and data fusion in radiation therapy. Br J Radiol. 2006;79 Spec No 1:S99–108.

    Google Scholar 

  9. Veninga T, Huisman H, van der Maazen RW, Huizenga H. Clinical validation of the normalized mutual information method for registration of CT and MR images in radiotherapy of brain tumors. J Appl Clin Med Phys. 2004;5:66–79.

    Article  PubMed  Google Scholar 

  10. Doran SJ, Charles-Edwards L, Reinsberg SA, Leach MO. A complete distortion correction for MR images: I. Gradient warp correction. Phys Med Biol. 2005;50:1343–61.

    Article  PubMed  Google Scholar 

  11. Fransson A, Andreo P, Potter R. Aspects of MR image distortions in radiotherapy treatment planning. Strahlenther Onkol. 2001;177:59–73.

    Article  PubMed  CAS  Google Scholar 

  12. Reinsberg SA, Doran SJ, Charles-Edwards EM, Leach MO. A complete distortion correction for MR images: II. Rectification of static-field inhomogeneities by similarity-based profile mapping. Phys Med Biol. 2005;50:2651–61.

    Article  PubMed  Google Scholar 

  13. Tanner SF, Finnigan DJ, Khoo VS, Mayles P, Dearnaley DP, Leach MO. Radiotherapy planning of the pelvis using distortion corrected MR images: the removal of system distortions. Phys Med Biol. 2000;45:2117–32.

    Article  PubMed  CAS  Google Scholar 

  14. Payne GS, Leach MO. Applications of magnetic resonance spectroscopy in radiotherapy treatment planning. Br J Radiol. 2006;79 Spec No 1:S16–26.

    Google Scholar 

  15. Norris DG. High field human imaging. J Magn Reson Imaging. 2003;18:519–29.

    Article  PubMed  Google Scholar 

  16. Viswanathan AN, Dimopoulos J, Kirisits C, Berger D, Potter R. Computed tomography versus magnetic resonance imaging-based contouring in cervical cancer brachytherapy: results of a prospective trial and preliminary guidelines for standardized contours. Int J Radiat Oncol Biol Phys. 2007;68:491–8.

    Article  PubMed  Google Scholar 

  17. Petric P, Dimopoulos J, Kirisits C, Berger D, Hudej R, Potter R. Inter- and intraobserver variation in HR CTV contouring: intercomparison of transverse and paratransverse image orientation in 3D-MRI assisted cervix cancer brachytherapy. Radiother Oncol. 2008;89:164–71.

    Article  PubMed  Google Scholar 

  18. Potter R. Modern imaging in Brachytherapy. In: Gerbaulet A, Potter R, Mazeron JJ, Meertens H, Van LE, editors. The GEC ESTRO Handbook of Brachytherapy. Brussels: European Society for Therapeutic Radiology and Oncology; 2002. p. 123–51.

    Google Scholar 

  19. Beadle BM, Jhingran A, Salehpour M, Sam M, Iyer RB, Eifel PJ. Cervix regression and motion during the course of external beam chemoradiation for cervical cancer. Int J Radiat Oncol Biol Phys. 2009;73:235–41.

    Article  PubMed  Google Scholar 

  20. Lee CM, Shrieve DC, Gaffney DK. Rapid involution and mobility of carcinoma of the cervix. Int J Radiat Oncol Biol Phys. 2004;58:625–30.

    Article  PubMed  Google Scholar 

  21. Potter R, Haie-Meder C, Van LE, et al. Recommendations from gynecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol. 2006;78:67–77.

    Article  PubMed  Google Scholar 

  22. Saarnak AE, Boersma M, van Bunningen BN, Wolterink R, Steggerda MJ. Inter-observer variation in delineation of bladder and rectum contours for brachytherapy of cervical cancer.Radiother Oncol. 2000;56:37–42.

    Google Scholar 

  23. Foshager MC, Walsh JW. CT anatomy of the female pelvis: a second look. Radiographics. 1994;14:51–64.

    PubMed  CAS  Google Scholar 

  24. Vick CW, Walsh JW, Wheelock JB, Brewer WH. CT of the normal and abnormal parametria in cervical cancer. AJR Am J Roentgenol. 1984;143:597–603.

    PubMed  CAS  Google Scholar 

  25. Walsh JW, Goplerud DR. Prospective comparison between clinical and CT staging in primary cervical carcinoma. AJR Am J Roentgenol. 1981;137:997–1003.

    PubMed  CAS  Google Scholar 

  26. Hricak H, Lacey CG, Sandles LG, Chang YC, Winkler ML, Stern JL. Invasive cervical carcinoma: comparison of MR imaging and surgical findings. Radiology. 1988;166:623–31.

    PubMed  CAS  Google Scholar 

  27. Hatano K, Sekiya Y, Araki H, et al. Evaluation of the therapeutic effect of radiotherapy on cervical cancer using magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 1999;45:639–44.

    Article  PubMed  CAS  Google Scholar 

  28. Mayr NA, Magnotta VA, Ehrhardt JC, et al. Usefulness of tumor volumetry by magnetic resonance imaging in assessing response to radiation therapy in carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys. 1996;35:915–24.

    Article  PubMed  CAS  Google Scholar 

  29. Mayr NA, Taoka T, Yuh WT, et al. Method and timing of tumor volume measurement for outcome prediction in cervical cancer using magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2002;52:14–22.

    Article  PubMed  Google Scholar 

  30. Kim SH, Choi BI, Lee HP, et al. Uterine cervical carcinoma: comparison of CT and MR findings. Radiology. 1990;175:45–51.

    PubMed  CAS  Google Scholar 

  31. Kim SH, Choi BI, Han JK, et al. Preoperative staging of uterine cervical carcinoma: comparison of CT and MRI in 99 patients. J Comput Assist Tomogr. 1993;17:633–40.

    Article  PubMed  CAS  Google Scholar 

  32. Yang WT, Lam WW, Yu MY, Cheung TH, Metreweli C. Comparison of dynamic helical CT and dynamic MR imaging in the evaluation of pelvic lymph nodes in cervical carcinoma. AJR Am J Roentgenol. 2000;175:759–66.

    PubMed  CAS  Google Scholar 

  33. Manfredi R, Mirk P, Maresca G, et al. Local-regional staging of endometrial carcinoma: role of MR imaging in surgical planning. Radiology. 2004;231:372–8.

    Article  PubMed  Google Scholar 

  34. Rockall AG, Sohaib SA, Harisinghani MG, et al. Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer. J Clin Oncol. 2005;23:2813–21.

    Article  PubMed  Google Scholar 

  35. Scheidler J, Heuck AF. Imaging of cancer of the cervix. Radiol Clin North Am. 2002;40:577–90, vii.

    Google Scholar 

  36. Kitajima K, Murakami K, Yamasaki E, et al. Accuracy of 18F-FDG PET/CT in detecting pelvic and paraaortic lymph node metastasis in patients with endometrial cancer. AJR Am J Roentgenol. 2008;190:1652–8.

    Article  PubMed  Google Scholar 

  37. Loft A, Berthelsen AK, Roed H, et al. The diagnostic value of PET/CT scanning in patients with cervical cancer: a prospective study. Gynecol Oncol. 2007;106:29–34.

    Article  PubMed  Google Scholar 

  38. Park JY, Kim EN, Kim DY, et al. Comparison of the validity of magnetic resonance imaging and positron emission tomography/computed tomography in the preoperative evaluation of patients with uterine corpus cancer. Gynecol Oncol. 2008;108:486–92.

    Article  PubMed  Google Scholar 

  39. Small Jr W, Mell LK, Anderson P, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy in postoperative treatment of endometrial and cervical cancer. Int J Radiat Oncol Biol Phys. 2008;71:428–34.

    Article  PubMed  Google Scholar 

  40. Taylor A, Rockall AG, Powell ME. An atlas of the pelvic lymph node regions to aid radiotherapy target volume definition. Clin Oncol (R Coll Radiol ). 2007;19:542–50.

    Article  CAS  Google Scholar 

  41. Chao KS, Lin M. Lymphangiogram-assisted lymph node target delineation for patients with gynecologic malignancies. Int J Radiat Oncol Biol Phys. 2002;54:1147–52.

    Article  PubMed  Google Scholar 

  42. Dinniwell R, Chan P, Czarnota G, et al. Pelvic lymph node topography for radiotherapy treatment planning from ferumoxtran-10 contrast-enhanced magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2009 Jul 1;74:844–51.

    Article  PubMed  Google Scholar 

  43. Taylor A, Rockall AG, Reznek RH, Powell ME. Mapping pelvic lymph nodes: guidelines for delineation in intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2005;63:1604–12.

    Article  PubMed  Google Scholar 

  44. Vilarino-Varela MJ, Taylor A, Rockall AG, Reznek RH, Powell ME. A verification study of proposed pelvic lymph node localisation guidelines using nanoparticle-enhanced magnetic resonance imaging. Radiother Oncol. 2008;89:192–6.

    Article  PubMed  Google Scholar 

  45. Lim K, Chan P, Dinniwell R, et al. Cervical cancer regression measured using weekly magnetic resonance imaging during fractionated radiotherapy: radiobiologic modeling and correlation with tumor hypoxia. Int J Radiat Oncol Biol Phys. 2008;70:126–33.

    Article  PubMed  Google Scholar 

  46. Taylor A, Powell ME. An assessment of interfractional uterine and cervical motion: implications for radiotherapy target volume definition in gynecological cancer. Radiother Oncol. 2008;88:250–7.

    Article  PubMed  Google Scholar 

  47. van de Bunt L, Jurgenliemk-Schulz IM, de Kort GA, Roesink JM, Tersteeg RJ, van der Heide UA. Motion and deformation of the target volumes during IMRT for cervical cancer: what margins do we need? Radiother Oncol. 2008;88:233–40.

    Article  PubMed  Google Scholar 

  48. Haie-Meder C, Potter R, Van LE, et al. Recommendations from Gynecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol. 2005;74:235–45.

    Article  PubMed  Google Scholar 

  49. Kirisits C, Potter R, Lang S, Dimopoulos J, Wachter-Gerstner N, Georg D. Dose and volume parameters for MRI-based treatment planning in intracavitary brachytherapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2005;62:901–11.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes C. Athanasios Dimopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Dimopoulos, J.C.A., Fidarova, E. (2011). The Use of Sectional Imaging with CT and MRI for Image-Guided Therapy. In: Viswanathan, A., Kirisits, C., Erickson, B., Pötter, R. (eds) Gynecologic Radiation Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68958-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68958-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68954-6

  • Online ISBN: 978-3-540-68958-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics